

Contents
Page 1

Page

3Introduction

4Useful Reference

Parameter Functions
10fxGetNameParameter
11fxGetTableParameter

Column Name Functions
13fxAutoCleanColumnNames
14fxFlattenHeaderRows
15fxRenameColumns
16fxRenameColumnsByPosition

Data Transformation Functions
18fxBlankToNull
19fxCartesianJoin
20fxColumnReAlign
21fxDeleteNullMoveLeft
22fxExpandColumnDynamic
23fxFillRightOrLeft
24fxGroupColumnUnpivot
25fxGroupRowUnpivot
26fxFilterByList
27fxPivotAllRows
28fxRemoveNullColumns
29fxRemoveToBottomNull
30fxRemoveTopRowsUntilValue
31fxRepeatValueToNull
32fxUnstackOnInterval
33fxUnstackOnValue

Text Functions
35fxMultiFindReplace
36fxTextRemoveSpaces

Calculation Functions
38fxGroupRunningTotal
39fxRunningTotal
40fxPreviousRow

Version 1.0002

Contents
Lookup Functions

42fxLookupApproximateMatch
43fxLookupExactMatch

Data Type Functions
45fxAutoDetectDataType

Ranking & Order Functions
47fxRowNumberByGroup

Date and Time Functions
49fxCalendarTable
50fxCalendarTableNonStandard
51fxFinancialPeriod
52fxTimeGroups
53fxTimeTable

Files & Folder Functions
55fxCombineWorksheetsByName
57fxCombineWorksheetsByPosition
59fxExcelDataFromList
60fxFilesInSharePointFolder

Nested Table Functions
62fxTransformNestedTable

Page 2

Version 1.0002

Introduction
The “problem” with Power Query
Power Query is easy…until it isn’t, and then it’s really hard.

Initially, Power Query appears easy; we can solve lots of problems with very little knowledge. However, it
reaches a point where the learning curve accelerates massively. Suddenly, problems which are slightly
more complex require significantly more complex solutions (and advanced M code skills).

Making Power Query easier for longer
Having seen many struggle with the learning curve, I wanted to do something to help. The majority of
users are never going to be M code experts (and don’t want to be either). Therefore, the question is, how
can we make Power Query easier for longer? This is the goal of Power Query Quick Steps.

Power Query Quick Steps is a collection of custom functions. They provide users with ridiculously easy
transformations for tricky situations.

For any users who become M code experts, I applaud you, it’s a tough and frustrating road. For any users
who just want to get the job done as easily as possible, this is for you.

Page 3

Useful reference
Functions and arguments
The Quick Steps custom functions are constructed as a function name, followed by any arguments
enclosed in brackets/parentheses.

Syntax: functionName (argument1, argument2, [argument3])

In this documentation and supporting videos, optional arguments are shown in square brackets (see
argument3 above) this maintains consistency with Excel formulas which readers may already be familiar
with. The square brackets do not need to be entered into Power Query and they will not appear in Power
Query’s IntelliSense.

Even if no arguments are needs, the opening and close bracket are still required.

Power Query is case sensitive, so take care to ensure arguments are entered correctly.

Arguments may require different data types: tables, text, numbers, logical, dates or lists. These are all
detailed below.

Tables
A table is a result which contains a 2-dimensional grid. It may be the result for a query, or a step from
within an existing query.

Where a table name contains no spaces they are referenced by their name (e.g. MyQuery). However,
where a table name contains spaces or some special characters they are enclosed in double quotes and
proceeded by a # symbol (e.g. #"My Query").

Text
Text is any value enclosed in double quotes (e.g. "Alpha"). This excludes Table names, which are also
preceded by a # symbol as noted above.

Numbers
Numbers may be positive, negative and include decimal places.

Note: Any numbers enclosed in double quotes are treated as text.

Logical
Logical values (also known as boolean values) can have the value true or false. In Power Query, logical
values are entered as lower case.

Page 4

Useful reference
Dates
Any argument requiring a date must receive that value a date data type.

Different countries use different date formats, therefore the presentation of a date may appear different
in your region.

The following are examples of valid dates:

• Specific date: #date(2023,3,31)

• Specific date from text (local): Date.From("31/01/2023") – example shows dd/mm/yyyy local format

• Specific date from text (ISO8601): Date.From("2023-01-31")

• Today’s date (local): Date.From(DateTimeZone.LocalNow())

• Today’s date (UTC): Date.From(DateTimeZone.UtcNow())

• Earliest date in date column: List.Min(QueryName[DateColumn])

• Latest date in date column: List.Max(QueryName[DateColumn])

• Parameter dates: Dates using the fxGetNameParameter or fxGetTableParameter functions

Lists
Many custom functions include list arguments. Lists are special objects in Power Query and can be applied
in multiple ways.

 Manual lists
Shown in curly brackets with a comma separator between each element in the list.
Example: {"Alpha","Bravo","Charlie","Delta"}

 Table column lists
An individual table column is a list.
Example: #"Table Name"[Column Name]

 List function lists
Some Power Query functions return a list
Example: Text.Split("Alpha,Bravo,Charlie,Delta",",")

Note: Lists can contain any data type.

Other data types
Power Query’s other data types are not included as arguments with the Quick Steps custom functions.

Page 5

Useful reference
IntelliSense
When entering a custom function, the IntelliSense for function arguments will become visible to help enter
arguments in the correct order.

Due to a bug in Power Query, the bold and underlined text may not be the next argument to enter into
the formula bar. For example, in the screenshot above the second argument is ValueColumnName, but
Power Query has highlighted part of the LookupValueColumnName argument.

Code Preview
While entering a custom function, hovering over the name of the function displays a preview of the
underlying code.

Within Excel, the code preview cannot scroll to see more information.

Where space allows, Quick Step displays detail for each function argument.

Arguments

Page 6

[1] Hover over function name [2] Code preview appears

Data type of the
current argument

Function argument
details

Useful reference
Compatibility warning
When using custom functions or example files the Compatibility Warning message may appear.

Unless explicitly stated in the documentation, all functions and examples should be compatible with all
versions of Power Query for Excel and Power BI.

Error messages
Power Query error messages can be difficult to understand. When using the Quick Steps custom functions,
the most likely errors are caused by incorrect data types.

In the screenshot above, a value of "Alpha" has been provided for an argument which requires a list.
Therefore, the argument value must be changed to {"Alpha"}.

If a custom function calculates a value which is the wrong data type, it may also cause an error.

In the screenshot above, a value of "Alpha" exists in the data set, however, the custom function requires
the data type to be a number for it to calculate correctly.

Page 7

Useful reference
Query folding
The Quick Step custom functions are designed primarily for dealing with files and folders, rather than
database connections. Therefore, functions may not be optimized for query folding.

Bugs & feature requests
Every effort has been made to make this product and all associated material as complete and accurate as
possible, but no warranty or fitness is implied. The information and downloads are provided on an “as is”
basis. The author and publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from any information or downloads contained in this product.

If you find any bugs or errors, please report them here: https://exceloffthegrid.com/report-bug.

To request new features, or if you discover faster methods to perform the custom functions, visit this
page: https://exceloffthegrid.com/feature-request.

Page 8

Parameter
Functions

fxGetNameParameter
PURPOSE:
Returns a value from a named range in the current workbook to use as a parameter inside a query.

SYNTAX:
fxGetNameParameter (NamedRange, [DataTypeName])

 NamedRange (text) - Excel named range containing the parameter.
 [DataTypeName] (text) - Data type of the parameter value.

 Valid values include "Text", "Number", "Date/Time", "Date", "Time", "Duration", "True/False“.
 If excluded, the default type is Any.

NOTES:
 (None)

PURPOSE:
Returns a value from a named range in the current workbook to use as a parameter inside a query.

SYNTAX:
fxGetNameParameter (NamedRange, [DataTypeName])

 NamedRange (text) - Excel named range containing the parameter.
 [DataTypeName] (text) - Data type of the parameter value.

 Valid values include "Text", "Number", "Date/Time", "Date", "Time", "Duration", "True/False“.
 If excluded, the default type is Any.

NOTES:
 (None)

EXAMPLE #1

The Source step includes reference to a hard coded file path

The Excel workbook contains a named range called FilePath

Replace the hardcoded path with the named range using fxGetNameParameter.

 "FilePath": The named range
 "Text": FilePath is a text data type

EXAMPLE #2

A step filters to include all dates before 30 June 2023

The Excel workbook contains a named range called Month End

Replace the hardcoded date with the named range using fxGetNameParameter.

 "MonthEnd": The named range
 "Date": Month End is a date data type

Based on: fnGetParameter function from Master Your Data With Power Query (Puls / Escobar)

Page 10

fxGetTableParameter
PURPOSE:
Returns a value from a table in the current workbook to use as a parameter inside a query.

SYNTAX:
fxGetTableParameter (TableName, ParameterName, ParameterNameColumn, ParameterValueColumn, [DataTypeName])

 TableName (text) - Table containing the parameter.
 ParameterName (text) - Name of the parameter in the table.
 ParameterNameColumn (text) - Column name containing the parameter names.
 ParameterValueColumn (text) - Column name containing the value to return.
 [DataTypeName] (text) - Data type of the parameter value.

 Valid values include "Text", "Number", "Date/Time", "Date", "Time", "Duration", "True/False“.
 If excluded, the default type is Any.

NOTES:
 (None)

PURPOSE:
Returns a value from a table in the current workbook to use as a parameter inside a query.

SYNTAX:
fxGetTableParameter (TableName, ParameterName, ParameterNameColumn, ParameterValueColumn, [DataTypeName])

 TableName (text) - Table containing the parameter.
 ParameterName (text) - Name of the parameter in the table.
 ParameterNameColumn (text) - Column name containing the parameter names.
 ParameterValueColumn (text) - Column name containing the value to return.
 [DataTypeName] (text) - Data type of the parameter value.

 Valid values include "Text", "Number", "Date/Time", "Date", "Time", "Duration", "True/False“.
 If excluded, the default type is Any.

NOTES:
 (None)

TABLE FOR EXAMPLES

The workbook includes a table called Parameters

EXAMPLE #2

A step filters to include all dates before 30 June 2023

Replace the hardcoded date with the value from the Parameters table using fxGetTableParameter.

 "Parameters": The table name
 "Date": The lookup value
 "Name": The lookup column
 "Value": The return column
 "Date": Date is a date data type

Parameters

EXAMPLE #1

The Source step includes reference to a hard coded file path

Replace the hardcoded path with the value from the Parameters table using fxGetTableParameter.

 "Parameters": The table name
 "File Path": The lookup value
 "Name": The lookup column
 "Value": The return column
 "Text": The File Path is a text data type

Name Value
File Path C:\Examples\Power Query\Excel Workbook.xlsx
Report Date 31-Mar-2023

Based on: fnGetParameter function from Master Your Data With Power Query (Puls / Escobar)

Page 11

Column Name
Functions

EXAMPLE

The source Excel file includes column headers which are difficult to read and inconsistent.

Load the data into Power Query and ensure headers are promoted. Use the fxAutoCleanColumnNames function to automatically
clean the existing column names.

 #"Promoted Headers": Name of previous step

Result:

fxAutoCleanColumnNames
PURPOSE:
Changes columns names to new names based on rules. Inserts space and applies capitalization when a string:

 Changes from numbers to text.
 Changes from text to numbers.
 Changes from lower case to upper case.
 Includes an underscore.

SYNTAX:
fxAutoCleanColumnNames (Table, [ColumnNamesList], [ListTypeIsInclude])

 Table (table) - Table or step to perform the transformation on.
 [ColumnNamesList] (list of text) - List of column names to clean (e.g. {"Column1","Column2"}).

 If excluded apply to all columns.
 [ListTypeIsInclude] (logical) - Switch to determine if ColumnNamesList includes or excludes the list of names to clean.

 true: apply to items in the list
 false: apply to items not in the list

NOTES:
 Only use ColumnNamesList and ListTypeIsIncude where the action is to include or exclude specific column headers.
 If used, both optional arguments are required.

PURPOSE:
Changes columns names to new names based on rules. Inserts space and applies capitalization when a string:

 Changes from numbers to text.
 Changes from text to numbers.
 Changes from lower case to upper case.
 Includes an underscore.

SYNTAX:
fxAutoCleanColumnNames (Table, [ColumnNamesList], [ListTypeIsInclude])

 Table (table) - Table or step to perform the transformation on.
 [ColumnNamesList] (list of text) - List of column names to clean (e.g. {"Column1","Column2"}).

 If excluded apply to all columns.
 [ListTypeIsInclude] (logical) - Switch to determine if ColumnNamesList includes or excludes the list of names to clean.

 true: apply to items in the list
 false: apply to items not in the list

NOTES:
 Only use ColumnNamesList and ListTypeIsIncude where the action is to include or exclude specific column headers.
 If used, both optional arguments are required.

Difficult to read & inconsistent
column names

Clean column names

Page 13

EXAMPLE

The source Excel file includes data with multiple header rows (including merged cells).

Load the data into Power Query, ensure headers are not promoted. Note: cells are no longer merged (see Actual 2023 Q1).

Use the fxFlattenHeaderRows function to flatten the 3 header rows to a single row. Missing headers are filled to the right.

 Source: Name of previous step
 3: Number of header rows
 "|": The character used as the separator when flattening rows
 "Right": Headers are filled to the right, replacing any null values.

Result: Header rows flattened into a single row

fxFlattenHeaderRows
PURPOSE:
Flattens multiple header rows into a single header row.

SYNTAX:
fxFlattenHeaderRows (Table, HeaderRowCount, Separator, [FillDirection])

 Table (table) - Table or step to perform the transformation on.
 HeaderRowCount (number) - Number of header rows to flatten.
 Separator (text) - The character(s) to use as a separator between the individual elements of the final header row.
 [FillDirection] (text) - The direction to fill the missing column data.

 "Right": Fill to the right.
 "Left": Fill to the left.
 Null: no fill.

NOTES:
 The header rows must be in the first rows of the data; not part of an existing header row.

PURPOSE:
Flattens multiple header rows into a single header row.

SYNTAX:
fxFlattenHeaderRows (Table, HeaderRowCount, Separator, [FillDirection])

 Table (table) - Table or step to perform the transformation on.
 HeaderRowCount (number) - Number of header rows to flatten.
 Separator (text) - The character(s) to use as a separator between the individual elements of the final header row.
 [FillDirection] (text) - The direction to fill the missing column data.

 "Right": Fill to the right.
 "Left": Fill to the left.
 Null: no fill.

NOTES:
 The header rows must be in the first rows of the data; not part of an existing header row.

3 Header Rows Merged cells

Page 14

EXAMPLE

The source file includes a table with the following columns:

Column names to be replaced are contained in a Table:

Use fxRenameColumns to rename columns, if the column name exists

 #"Changed Type": Name of previous step
 FindReplace[Find]: The list of column names to find
 FindReplace[Replace]: The list of column names to replace the old names

Result:

fxRenameColumns
PURPOSE:
Renames columns, if the names exist.

SYNTAX:
fxRenameColumns (Table, ColumnNamesList, NewColumnNamesList)

 Table (table) - Table or step to perform the transformation on.
 ColumnNamesList (list of text) - List of columns to rename (e.g. {"Column1","Column2","Column3"}).
 NewColumnNamesList (list of text) - List of new column names (e.g. {"NewColumn1", "NewColumn2", "NewColumn3"}).

NOTES:
 The old and new column names must be in the corresponding location in each list; therefore, the lists will contain the same

number of items.

PURPOSE:
Renames columns, if the names exist.

SYNTAX:
fxRenameColumns (Table, ColumnNamesList, NewColumnNamesList)

 Table (table) - Table or step to perform the transformation on.
 ColumnNamesList (list of text) - List of columns to rename (e.g. {"Column1","Column2","Column3"}).
 NewColumnNamesList (list of text) - List of new column names (e.g. {"NewColumn1", "NewColumn2", "NewColumn3"}).

NOTES:
 The old and new column names must be in the corresponding location in each list; therefore, the lists will contain the same

number of items.

Query Name: FindReplace

Column names does not exist in Table, but will not cause error

Page 15

EXAMPLE

The source file includes a table with the following columns:

Use fxRenameColumnsByPosition to rename the first and third columns.

 #"Changed Type": Name of previous step
 {0,2}: Replace the first and third columns (zero based)
 {"Product", "Type"}: The list of column names to replace

Result:

fxRenameColumnsByPosition
PURPOSE:
Renames columns based on their position (zero based).

SYNTAX:
fxRenameColumnsByPosition (Table, ColumnPositionsList, NewColumnNamesList)

 Table (table) - Table or step to perform the transformation on.
 ColumnPositionsList (list of numbers) - List of column numbers (e.g. {0,2,4}).
 NewColumnNamesList (list of text) - List of new column names (e.g. {"NewColumn1", "NewColumn2", "NewColumn3"}).

NOTES:
 The column positions and new column names must be in the corresponding location in each list; therefore, the lists will

contain the same number of items.

PURPOSE:
Renames columns based on their position (zero based).

SYNTAX:
fxRenameColumnsByPosition (Table, ColumnPositionsList, NewColumnNamesList)

 Table (table) - Table or step to perform the transformation on.
 ColumnPositionsList (list of numbers) - List of column numbers (e.g. {0,2,4}).
 NewColumnNamesList (list of text) - List of new column names (e.g. {"NewColumn1", "NewColumn2", "NewColumn3"}).

NOTES:
 The column positions and new column names must be in the corresponding location in each list; therefore, the lists will

contain the same number of items.

Page 16

Data
Transformation

Functions

EXAMPLE

The source data includes blank values which we wish to be null.

Use the fxBlankToNull function to convert all blank values in a table to null.

 #"Changed Type": Name of previous step

Result:

Add a list of column names to change only the specified columns:

 #"Changed Type": Name of previous step
 {"Item", "Region"}: List of column names

fxBlankToNull
PURPOSE:
Converts all blank values in a table or column to null.

SYNTAX:
fxBlankToNull (Table, [ColumnNamesList])

 Table (table) - Table or step to perform the transformation on.
 [ColumnNamesList] (list of text) - List of column names to convert blanks to null (e.g. {"Column1","Column2"}).

 If excluded apply to all columns.

NOTES:
 (none)

PURPOSE:
Converts all blank values in a table or column to null.

SYNTAX:
fxBlankToNull (Table, [ColumnNamesList])

 Table (table) - Table or step to perform the transformation on.
 [ColumnNamesList] (list of text) - List of column names to convert blanks to null (e.g. {"Column1","Column2"}).

 If excluded apply to all columns.

NOTES:
 (none)

Page 18

fxCartesianJoin
PURPOSE:
Performs a cartesian join on all tables included in a list. (i.e. creates a table of all combinations).

SYNTAX:
fxCartesianJoin (TableList)

 TableList (list of tables) - List of tables to join (e.g. {Table1,Table2,Table3}).

NOTES:
 TableList may also include names of previous steps.

PURPOSE:
Performs a cartesian join on all tables included in a list. (i.e. creates a table of all combinations).

SYNTAX:
fxCartesianJoin (TableList)

 TableList (list of tables) - List of tables to join (e.g. {Table1,Table2,Table3}).

NOTES:
 TableList may also include names of previous steps.

EXAMPLE

There are 3 queries in Power Query (Item, Region, Size)

In a blank query, enter the following formula:

Result (complete list of everything of everything):

Query: Item Query: Region

Query: Size

Page 19

EXAMPLE

The source Excel file includes data where each row has the same number of values, but they are not aligned in a column.

Load the data into Power Query. Use the fxColumnReAlign function to place the data into the correct columns.

 Data_Sheet: Name of previous step

Result:

fxColumnReAlign
PURPOSE:
Re-align columns where data does not stack correctly in a single column.

SYNTAX:
fxColumnReAlign (Table)

 Table (table) - Table or step to perform the transformation on.

NOTES:
 Re-alignment works where empty values are null values, and there are no genuine null values in the data set.

PURPOSE:
Re-align columns where data does not stack correctly in a single column.

SYNTAX:
fxColumnReAlign (Table)

 Table (table) - Table or step to perform the transformation on.

NOTES:
 Re-alignment works where empty values are null values, and there are no genuine null values in the data set.

Page 20

EXAMPLE

The data contains columns which are not aligned.

fxColumnReAlign is not suitable as some columns contain valid null values. Use fxDeleteNullMoveLeft to remove nulls in the Size
column and shift the values left.

 #"Changed Type": Name of previous step
 "Size": Name of the column to remove null values from

Result:

fxDeleteNullMoveLeft
PURPOSE:
Deletes null values in a column and shifts the cells left to fill the gap.

SYNTAX:
fxDeleteNullMoveLeft (Table, ColumnName)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Column name containing the null values to delete.

NOTES:
 Works where empty values are represented by null and, and there are no genuine null values in the column.

PURPOSE:
Deletes null values in a column and shifts the cells left to fill the gap.

SYNTAX:
fxDeleteNullMoveLeft (Table, ColumnName)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Column name containing the null values to delete.

NOTES:
 Works where empty values are represented by null and, and there are no genuine null values in the column.

Page 21

EXAMPLE

A workbook has two sheets Data #1 and Data #2. Later an additional sheet is added (Data #3) with a new column (Size).

To ensure new columns are included with the data is expanded, use fxExpandColumnDynamic.

 #"Removed Other Columns": Name of previous step
 "Data": Name of the column to expand
 true: Promote column headers before expanding data

Result:

fxExpandColumnDynamic
PURPOSE:
Expands a column dynamically including adding any new data.

SYNTAX:
fxExpandColumnDynamic (Table, ColumnName, [PromoteHeaders])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing the tables to expand.
 [PromoteHeaders] (logical) - Should headers be promoted prior to expanding.

 true: Promote headers.
 false / null: Do not promote headers.

NOTES:
 Use fxAutoDetectDataType to automatically apply data type to columns

PURPOSE:
Expands a column dynamically including adding any new data.

SYNTAX:
fxExpandColumnDynamic (Table, ColumnName, [PromoteHeaders])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing the tables to expand.
 [PromoteHeaders] (logical) - Should headers be promoted prior to expanding.

 true: Promote headers.
 false / null: Do not promote headers.

NOTES:
 Use fxAutoDetectDataType to automatically apply data type to columns

Data #1 Data #2 Data #3 (Added Later)

New column

New column added

WARNING: This hardcodes column names.

Page 22

EXAMPLE

The data includes an Item column and a New Name column. Where there is no value in the New Name column we want to fill the
value from the Item column.

Use fxFillRightOrLeft to replace the null values.

 #"ChangedType": Name of previous step
 true: Fill the values right (i.e. replaced by the Item column).

Result:

fxFillRightOrLeft
PURPOSE:
Fills null values with the values from the left or right.

SYNTAX:
fxFillRightOrLeft (Table, [FillRight])

 Table (table) - Table or step to perform the transformation on.
 [FillRight] (logical) - Determine the direction to fill from.

 true/null: fill values to the right.
 false: fill values to the left.

NOTES:
 (None)

PURPOSE:
Fills null values with the values from the left or right.

SYNTAX:
fxFillRightOrLeft (Table, [FillRight])

 Table (table) - Table or step to perform the transformation on.
 [FillRight] (logical) - Determine the direction to fill from.

 true/null: fill values to the right.
 false: fill values to the left.

NOTES:
 (None)

Page 23

Based on: fillRightOrLeft custom function by Melissa de Korte | https://www.linkedin.com/feed/update/urn:li:activity:7120778640262324226/

EXAMPLE

The example data contains a column followed by 3 pairs of Size and Values columns.

To get the Size and Value columns into two columns use the fxGroupColumnUnpivot function:

 #"Promoted Headers": Name of the previous step
 2: The number of columns in each group
 {"Item"}: The column name which is retained
 {"Size","Value"}: The list of column names to give to the columns

Result:

fxGroupColumnUnpivot
PURPOSE:
Unpivots multiple columns presented in a repeating column interval.

SYNTAX:
fxGroupColumnUnpivot (Table, GroupLength, [KeepColumnNamesList], [NewColumnNamesList])

 Table (table) - Table or Step name to perform the transformation on.
 Group Length (number) - Number of columns contained in each group of columns.
 [KeepColumnNamesList] (list) - List of column names that are unchanged.
 [NewColumnNamesList] (list) - List of names to apply to unpivoted columns. Default column names applied if null.

NOTES:
 NewColumnNamesList must contain the same number of items as the repeating column pattern.

PURPOSE:
Unpivots multiple columns presented in a repeating column interval.

SYNTAX:
fxGroupColumnUnpivot (Table, GroupLength, [KeepColumnNamesList], [NewColumnNamesList])

 Table (table) - Table or Step name to perform the transformation on.
 Group Length (number) - Number of columns contained in each group of columns.
 [KeepColumnNamesList] (list) - List of column names that are unchanged.
 [NewColumnNamesList] (list) - List of names to apply to unpivoted columns. Default column names applied if null.

NOTES:
 NewColumnNamesList must contain the same number of items as the repeating column pattern.

Page 24

EXAMPLE

A workbook contains a Table where the data is within paired rows.

Use fxGroupRowUnpivot to convert the data into columns.

 Source: Name of previous step
 {"Item"}: List of column names that are not unpivoted.
 {"Date", "Value"}: The new column names for the paired rows
 "Down": The fill direction to apply to the Item column to replace null values.

Result:

fxGroupRowUnpivot
PURPOSE:
Unpivots multiple rows presented in a repeating row interval.

SYNTAX:
fxGroupRowUnpivot (Table, KeepColumnNamesList, [NewColumnNamesList], [MissingDataFillDirection])

- Table (table) - Table or step to perform the transformation on.
- KeepColumnNamesList (list) – List of column names that are unchanged.
- [NewColumnNamesList] (list) - List of names to apply to unpivoted columns. Default names applied if null.
- [MissingDataFillDirection] (text) - Direction to fill the KeepColumnsNamesList to avoid null values.

- "Up" - Fills up
- "Down" / null / any other value - Fills down

NOTES:
 If used, NewColumnNamesList must contain the same number of items as the repeating row pattern.

PURPOSE:
Unpivots multiple rows presented in a repeating row interval.

SYNTAX:
fxGroupRowUnpivot (Table, KeepColumnNamesList, [NewColumnNamesList], [MissingDataFillDirection])

- Table (table) - Table or step to perform the transformation on.
- KeepColumnNamesList (list) – List of column names that are unchanged.
- [NewColumnNamesList] (list) - List of names to apply to unpivoted columns. Default names applied if null.
- [MissingDataFillDirection] (text) - Direction to fill the KeepColumnsNamesList to avoid null values.

- "Up" - Fills up
- "Down" / null / any other value - Fills down

NOTES:
 If used, NewColumnNamesList must contain the same number of items as the repeating row pattern.

Table Name: Filter

Table Name: Data

Page 25

EXAMPLE

A workbook has two tables Data and Filter. Both The goal is the filter the Item column by those items in the List column, Both
Tables have are loaded into Power query

To filter by a the list, use the fxFilterByList function:

 #"Changed Type": Name of previous step
 "Item": Name of the column to filter
 Filter[List]: Table name and column to filter by

Result:

Set the optional ListIsInclude parameter to false to invert the filter

 #"Changed Type": Name of previous step
 "Item": Name of the column to filter
 Filter[List]: Table name and column to filter by
 false: invert the list to exclude the items in the list

fxFilterByList
PURPOSE:
Filters a table column based on a list.

SYNTAX:
fxFilterByList (Table, ColumnName, FilterList, [ListIsInclude])

 Table (table) - Table or Step name to perform the transformation on.
 ColumnName (text) - Name of column containing values.
 FilterList (list) - List to filter by (e.g. {"Alpha","Bravo","Charlie"} or {1,2,3}).
 [ListIsInclude] (logical) - Does the list exclude or include the items in the list.

 true / null: Include the items in the list.
 false: Exclude the items in the list.

NOTES:
 (None)

PURPOSE:
Filters a table column based on a list.

SYNTAX:
fxFilterByList (Table, ColumnName, FilterList, [ListIsInclude])

 Table (table) - Table or Step name to perform the transformation on.
 ColumnName (text) - Name of column containing values.
 FilterList (list) - List to filter by (e.g. {"Alpha","Bravo","Charlie"} or {1,2,3}).
 [ListIsInclude] (logical) - Does the list exclude or include the items in the list.

 true / null: Include the items in the list.
 false: Exclude the items in the list.

NOTES:
 (None)

Table Name: Filter

Table Name: Data

Exclude items in list

Page 26

EXAMPLE

When Pivoting data in Power Query, it can cause errors where the column combinations are not unique.

Pivoting on Region with the Aggregate Value Function for Size set as Don’t Aggregate causes an error.

Use fxPivotAllRows to pivot on Region using Size as values.

• #"Changed Type": Name of previous step
• "Region": Pivot on the Region column
• "Size": Place unaggregated text from the Size column into the values section

Result:

fxPivotAllRows
PURPOSE:
Pivots all rows without causing an error.

SYNTAX:
fxPivotAllRows (Table, PivotByColumnName, PivotValuesColumnName)

 Table (table) - Table or step to perform the transformation on.
 PivotByColumnName (text) - Name of column to pivot on.
 PivotValuesColumnName (text) - Name of values column to include in the pivot.

NOTES:
 (None)

PURPOSE:
Pivots all rows without causing an error.

SYNTAX:
fxPivotAllRows (Table, PivotByColumnName, PivotValuesColumnName)

 Table (table) - Table or step to perform the transformation on.
 PivotByColumnName (text) - Name of column to pivot on.
 PivotValuesColumnName (text) - Name of values column to include in the pivot.

NOTES:
 (None)

Page 27

Based on: https://www.youtube.com/watch?v=Tzv7jZ9WjAM (Wyn Hopkins – Access Analytic)

EXAMPLE

The source Excel file includes columns that contain no values.

Load the data into Power Query. Use the fxRemoveNullColumns function to retain only columns with data.

 Data_Sheet: Name of previous step

Result:

fxRemoveNullColumns
PURPOSE:
Removes any columns with 100% null values.

SYNTAX:
fxRemoveNullColumns (Table)

 Table (table) - Table or step to perform the transformation on.

NOTES:
 (None)

PURPOSE:
Removes any columns with 100% null values.

SYNTAX:
fxRemoveNullColumns (Table)

 Table (table) - Table or step to perform the transformation on.

NOTES:
 (None)

Null value columns

Page 28

EXAMPLE

The source Excel file includes an unknown number of rows before the data header row.

Load the data into Power Query. Use the fxRemoveTopBottomNull function to remove all null rows at the top of the data.

 Data_Sheet: Name of previous step
 "Column3": Column name in Power Query use as the basis for removing null values
 "Top": Remove null values form the top

Result: Nulls removed ready for head to be promoted

fxRemoveTopBottomNull

Data header row

Unknown number of rows before header

PURPOSE:
Removes null values from top and/or bottom of a table.

SYNTAX:
fxRemoveTopBottomNull (Table, ColumnName, [ReturnOptions])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column to base transformation on.
 [ReturnOptions] (text) - Which null values should be removed.

 "Top": Remove null values from the top.
 "Bottom": Remove null values from the bottom.
 [any other value] / null: Remove null values from Top and Bottom.

NOTES:
 (None)

PURPOSE:
Removes null values from top and/or bottom of a table.

SYNTAX:
fxRemoveTopBottomNull (Table, ColumnName, [ReturnOptions])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column to base transformation on.
 [ReturnOptions] (text) - Which null values should be removed.

 "Top": Remove null values from the top.
 "Bottom": Remove null values from the bottom.
 [any other value] / null: Remove null values from Top and Bottom.

NOTES:
 (None)

Page 29

EXAMPLE

The source Excel file includes an unknown number of rows before the data header row. We want to remove all rows above the
third instance of the word Item.

Load the data into Power Query. Use the fxRemoveTopRowsUntilValue function to remove the rows.

 Data_Sheet: Name of previous step
 "Column1": Name of column to search
 "Item": Text to find
 true: Partial match permitted
 3: Find the 3rd instance of the search text

Result

fxRemoveTopRowsUntilValue

3rd Instance of word Item

Remove these rows

PURPOSE:
Removes an unknown number of rows from the top until search term found.

SYNTAX:
fxRemoveTopRowsUntilValue (Table, SearchColumnName, SearchValue, [PartialMatch], [InstanceNumber])

 Table (table) - Table or step to perform the transformation on.
 SearchColumnName (text) - Name of column to search.
 SearchValue (any) - Value to search for.
 [PartialMatch] (logical) - Determines if only partial match required (includes ignoring case).

 true: Partial match permitted.
 false / null: Exact match only.

 [InstanceNumber] (number): Where multiple matches exist, which instance to use as the basis for removing rows.

NOTES:
 (None)

PURPOSE:
Removes an unknown number of rows from the top until search term found.

SYNTAX:
fxRemoveTopRowsUntilValue (Table, SearchColumnName, SearchValue, [PartialMatch], [InstanceNumber])

 Table (table) - Table or step to perform the transformation on.
 SearchColumnName (text) - Name of column to search.
 SearchValue (any) - Value to search for.
 [PartialMatch] (logical) - Determines if only partial match required (includes ignoring case).

 true: Partial match permitted.
 false / null: Exact match only.

 [InstanceNumber] (number): Where multiple matches exist, which instance to use as the basis for removing rows.

NOTES:
 (None)

1

2

3

Page 30

EXAMPLE

The Table below shows repeat values in the Year and Quarter columns.

Use the fxRepeatValueToNull to convert repeated values to null.

 #"Changed Type": Name of previous step
 {"Year","Quarter"}: Columns to convert repeat values to null

Result

fxRepeatValueToNull
PURPOSE:
Changes repeat values in a column to null.

SYNTAX:
fxRepeatValueToNull (Table, ColumnNamesList)

 Table (table) - Table or step to perform the transformation on.
 ColumnNamesList (list of text) - List of column names containing the repeat values to change to null.

NOTES:
 (None)

PURPOSE:
Changes repeat values in a column to null.

SYNTAX:
fxRepeatValueToNull (Table, ColumnNamesList)

 Table (table) - Table or step to perform the transformation on.
 ColumnNamesList (list of text) - List of column names containing the repeat values to change to null.

NOTES:
 (None)

Page 31

EXAMPLE

The source Excel file includes address data in a single column. The addresses start every 4 rows.

Use the fxUnstackOnInterval function to convert the data into 4 columns.

 #"Removed Top Rows": Name of previous step
 "Column1": The Column containing the stacked data
 4: The rows in the repeating interval

Result:

fxUnstackOnInterval
PURPOSE:
Unstacks a column of data into separate columns based on a repeating numerical interval.

SYNTAX:
fxUnstackOnInterval (Table, ColumnName, Interval)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing the stacked data.
 Interval (number) - Length of repeating interval.

NOTES:
 (None)

PURPOSE:
Unstacks a column of data into separate columns based on a repeating numerical interval.

SYNTAX:
fxUnstackOnInterval (Table, ColumnName, Interval)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing the stacked data.
 Interval (number) - Length of repeating interval.

NOTES:
 (None)

Record #1

Record #2

Record #3

Page 32

EXAMPLE

The source Excel file includes company information (Year, Company Number, Company Name, Turnover, Number Of Employees).
The Number of Employees has been excluded from 2019. The number rows for reach record is not consistent. Each record starts
with the word Year:.

Use the fxUnstackOnValue function to convert the data into columns.

 #"Removed Top Rows": Name of previous step
 "Column1": The Column containing the stacked data
 "Year:": Start new row at each instance of Year:
 true: Ignore case applied. Year: and year: would be treated the same (not relevant in this example).

Result:

fxUnstackOnValue
PURPOSE:
Unstacks a column of data into separate columns based on the occurrence of a text string.

SYNTAX:
fxUnstackOnValue (Table, ColumnName, SearchValue, [IgnoreCase])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing the stacked data.
 SearchValue (text) - Text value to split on.
 [IgnoreCase] (logical) - Should case be ignored when matching the search value.

 true: ignore case for the search.
 false / null: apply case for search.

NOTES:
 Split occurs on Text values. To split on null or errors, replace null or errors with other values prior to unstacking.

PURPOSE:
Unstacks a column of data into separate columns based on the occurrence of a text string.

SYNTAX:
fxUnstackOnValue (Table, ColumnName, SearchValue, [IgnoreCase])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing the stacked data.
 SearchValue (text) - Text value to split on.
 [IgnoreCase] (logical) - Should case be ignored when matching the search value.

 true: ignore case for the search.
 false / null: apply case for search.

NOTES:
 Split occurs on Text values. To split on null or errors, replace null or errors with other values prior to unstacking.

Year: - indicates start of a new record

Page 33

Text Functions

EXAMPLE

In the Item and Region columns, replace entire cell values of the Alpha with Echo, South with Central and a with z.

Use fxMultiFindReplace to find and replace the values.

 #"Changed Type": Name of previous step
 {"Item","Region"}: Name of columns to apply the find and replace to
 {"Alpha","South","a"}:List of text to find
 {"Echo","Central","z"}: List of text to replace
 false: Partial match is not allowed, match full words only

Result:

To replace every instance of a with z change the PartialMatch parameter to true.

fxMultiFindReplace
PURPOSE:
Find and replace values based on a list.

SYNTAX:
fxMultiFindReplace (Table, ColumnNamesList, FindList, ReplaceList, PartialMatch)

 Table (table) - Table or step to perform the transformation on.
 ColumnNamesList (list of text) - List of column names to perform the find and replace action on.
 FindList (list of text) - List of text to find (e.g. {"A","B","C"}).
 ReplaceList (list of text) - List of text to replace (e.g. {"D","E","F"}).
 PartialMatch (logical) - Can the find and replace be a partial match.

 true: Find and replace is performed on a partial text string.
 false: Find and replace is performed on entire cell values only.

NOTES:
 The find and replace values must be in corresponding locations in each list.
 The transformation is case sensitive.

PURPOSE:
Find and replace values based on a list.

SYNTAX:
fxMultiFindReplace (Table, ColumnNamesList, FindList, ReplaceList, PartialMatch)

 Table (table) - Table or step to perform the transformation on.
 ColumnNamesList (list of text) - List of column names to perform the find and replace action on.
 FindList (list of text) - List of text to find (e.g. {"A","B","C"}).
 ReplaceList (list of text) - List of text to replace (e.g. {"D","E","F"}).
 PartialMatch (logical) - Can the find and replace be a partial match.

 true: Find and replace is performed on a partial text string.
 false: Find and replace is performed on entire cell values only.

NOTES:
 The find and replace values must be in corresponding locations in each list.
 The transformation is case sensitive.

Page 35

EXAMPLE

The source Table includes a text with leading, mid, trailing and non-breaking spaces.

Power Query’s Trim transformation only removes leading and trailing spaces; this will not work in this scenario.

Load the data into Power Query and promote the headers. Use fxTextRemoveSpaces to clean the excess spaces.

 #"Changed Type": Name of previous step
 {"Text"}: List of column names containing the text to remove spaces. This example has a single column.

Result:

To apply the multiple columns, include the column names in the list (e.g. {"Text“, "Another Text Column", "More Text Columns"})

WARNING: Power Query may not display the excess spaces in the preview window. But they are there and will display in Excel.

fxTextRemoveSpaces
PURPOSE:
Removes excess spaces from text values.

SYNTAX:
fxTextRemoveSpaces (Table, [ColumnNamesList])

 Table (table) - Table or step to perform the transformation on.
 [ColumnNamesList] (list of text) – List of column names on which to remove spaces.

NOTES:
 (None)

PURPOSE:
Removes excess spaces from text values.

SYNTAX:
fxTextRemoveSpaces (Table, [ColumnNamesList])

 Table (table) - Table or step to perform the transformation on.
 [ColumnNamesList] (list of text) – List of column names on which to remove spaces.

NOTES:
 (None)

Power Query preview is not
displaying the leading, mid or trailing
spaces. But they are definitely there!

Page 36

Calculation
Functions

EXAMPLE

The source file includes a Table of data.

Use the fxGroupRunningTotal function to add a running total calculation based on the Value column grouped by Region.

 #"Changed Type": Name of previous step
 "Value": Name of the column to create the running total for
 "Running Total": The name of the new running total column.
 "Region": Name of the column to group by
 false: Do not return records to their original order

Result:

fxGroupRunningTotal
PURPOSE:
Adds a running total column where the total resets at the start of each group.

SYNTAX:
fxGroupRunningTotal (Table, ColumnName, NewColumnName , GroupByColumnNamesList , [RetainOrder])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Column name to perform the calculation on.
 NewColumnName (text) - Name of the new running total column.
 GroupByColumnNamesList (list of text) - List of the column names to group by.
 [RetainOrder] (logical) - Should data be presented in the original order.

 true: values are returned to their original order.
 false / null: values ordered within each group.

NOTES:
 (None)

PURPOSE:
Adds a running total column where the total resets at the start of each group.

SYNTAX:
fxGroupRunningTotal (Table, ColumnName, NewColumnName , GroupByColumnNamesList , [RetainOrder])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Column name to perform the calculation on.
 NewColumnName (text) - Name of the new running total column.
 GroupByColumnNamesList (list of text) - List of the column names to group by.
 [RetainOrder] (logical) - Should data be presented in the original order.

 true: values are returned to their original order.
 false / null: values ordered within each group.

NOTES:
 (None)

North Running Total

Based on: https://gorilla.bi/power-query/running-total-by-category/ by (Rick De Groot)

South Running Total

Page 38

EXAMPLE

The source file includes a Table of data.

Use the fxRunningTotal function to add a running total calculation based on the Value column.

 #"Changed Type": Name of previous step
 "Value": Name of the column to create the running total for
 "Running Total": The name of the new running total column.

Result:

fxRunningTotal
PURPOSE:
Adds a running total column.

SYNTAX:
fxRunningTotal (Table, ColumnName , NewColumnName)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Column name to perform the calculation on.
 NewColumnName (text) - Name of the new running total column.

NOTES:
 (None)

PURPOSE:
Adds a running total column.

SYNTAX:
fxRunningTotal (Table, ColumnName , NewColumnName)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Column name to perform the calculation on.
 NewColumnName (text) - Name of the new running total column.

NOTES:
 (None)

Based on: https://gorilla.bi/power-query/running-total/ by (Rick De Groot)

Page 39

EXAMPLE

The source data includes a Value column.

Use the fxPreviousRow function to add a column with % variance to the prior row

 #"Changed Type": Name of previous step
 "Value": Name of the column to retrieve the previous row from
 "3 Months Prior": The new column name
 1: Get the value from 1 row above
 "Percentage": Returns the percentage variance

Result:

fxPreviousRow
PURPOSE:
Returns or calculates a value based on a previous or subsequent row in the table.

SYNTAX:
fxPreviousRow (Table, ColumnName, NewColumnName, RowOffset, [ReturnOptions])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing values.
 NewColumnName (text) - The name for the new column.
 RowOffset (number) - A number representing the rows to offset by.
 [ReturnOptions] (text) - Determine the type of value returned.

 "Value" / null: Returns the previous value.
 "Variance": Returns the numeric variance.
 "Percentage": Returns the percentage variance.

NOTES:
 RowOffset can include positive or negative numbers to get rows after or before.
 All missing values are shown as null.

PURPOSE:
Returns or calculates a value based on a previous or subsequent row in the table.

SYNTAX:
fxPreviousRow (Table, ColumnName, NewColumnName, RowOffset, [ReturnOptions])

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of column containing values.
 NewColumnName (text) - The name for the new column.
 RowOffset (number) - A number representing the rows to offset by.
 [ReturnOptions] (text) - Determine the type of value returned.

 "Value" / null: Returns the previous value.
 "Variance": Returns the numeric variance.
 "Percentage": Returns the percentage variance.

NOTES:
 RowOffset can include positive or negative numbers to get rows after or before.
 All missing values are shown as null.

Based on: https://www.thebiccountant.com/2018/07/12/fast-and-easy-way-to-reference-previous-or-next-rows-in-power-query-or-power-bi/

Page 40

Lookup
Functions

EXAMPLE

The source file includes a two tables; Data and Discount.

Use the fxLookupApproximateMatch function to add the Discount Rate column into the Data table. Values over the Threshold
receive the discount rate.

 #"Changed Type": Name of previous step
 "Value": Name of the column to use for the lookup value
 Discount: The name of table to lookup from
 "Threshold": The column to lookup in the lookup table
 "Discount Rate": The column to return the value from in the lookup table
 "Discount": The new column name
 "LessThan": Return the value less than or equal to the lookup value.

Result:

fxLookupApproximateMatch
PURPOSE:
Returns an approximate match lookup from another table.

SYNTAX:
fxLookupApproximateMatch (Table, ValueColumnName, LookupTable , LookupValueColumnName, LookupReturnColumnName,
NewColumnName, [LessThanOrMoreThan])

 Table (table) - Table or step to perform the transformation on.
 ValueColumnName (text) - Name of the column containing the lookup value.
 LookupTable (table) - Table to lookup the value from.
 LookupValueColumnName (text) - Name of the column to lookup.
 LookupReturnColumnName (text) - Name of the column to return value from.
 NewColumnName (text) - The name of the column to be added.
 [LessThanOrMoreThan] (text) - Should the return value be less than or equal to, or more than or equal to the lookup value.

 "LessThan" / [any other value]: Return values less than or equal to the value.
 "MoreThan": Return values more than or equal to the value.

NOTES:
 (None)

PURPOSE:
Returns an approximate match lookup from another table.

SYNTAX:
fxLookupApproximateMatch (Table, ValueColumnName, LookupTable , LookupValueColumnName, LookupReturnColumnName,
NewColumnName, [LessThanOrMoreThan])

 Table (table) - Table or step to perform the transformation on.
 ValueColumnName (text) - Name of the column containing the lookup value.
 LookupTable (table) - Table to lookup the value from.
 LookupValueColumnName (text) - Name of the column to lookup.
 LookupReturnColumnName (text) - Name of the column to return value from.
 NewColumnName (text) - The name of the column to be added.
 [LessThanOrMoreThan] (text) - Should the return value be less than or equal to, or more than or equal to the lookup value.

 "LessThan" / [any other value]: Return values less than or equal to the value.
 "MoreThan": Return values more than or equal to the value.

NOTES:
 (None)

Data
Discount

Based on: Approximate Match Joins – Master Your Data With Power Query (Puls/Escobar)

Page 41

EXAMPLE

The source file includes two tables; Data and Category

Use fxLookupExactMatch to lookup values from another table. Example, using the values in the Name and Size columns of the
Data table, lookup the Name and Size columns in the Category table and return the value found in Category column.

 #"Changed Type": Name of previous step
 {"Name","Size"}: List of column names to use for the lookup value
 Category: The name of table to lookup from.
 {"Name","Size"}: List of column names to lookup
 "Category": The column to return the value from
 "Category": The new column name
 "First": Return the first matching item

Result:

fxLookupExactMatch
PURPOSE:
Returns an exact match lookup from another table.

SYNTAX:
fxLookupExactMatch (Table, ValueColumnNameList, LookupTable , LookupValueColumnNameList, LookupReturnColumnName,
NewColumnName, [ReturnOptions])

 Table (table) - Table or step to perform the transformation on.
 ValueColumnNameList (list of text) - Name of the columns containing the lookup value as a list (e.g. {"Col1","Col2","Col3"} for

multicolumn, or {"Col1"} for a single column).
 LookupTable (table) - Table to lookup the value from.
 LookupValueColumnNameList (list of text) - Name of columns to lookup (e.g. {"Col1","Col2","Col3"} for multicolumn, or

{"Col1"} for a single column).
 LookupReturnColumnName (text) - Name of the column to return value from.
 NewColumnName (text) - Name of the column to be added.
 [ReturnOptions] (text) - Which item(s) should the lookup return.

 "First": Return the first item.
 "Last": Return the last item.
 [any other value] / null: Return all items.

NOTES:
 ValueColumnNameList and LookupValueColumnNameList must contain the same number of items in the same order.

PURPOSE:
Returns an exact match lookup from another table.

SYNTAX:
fxLookupExactMatch (Table, ValueColumnNameList, LookupTable , LookupValueColumnNameList, LookupReturnColumnName,
NewColumnName, [ReturnOptions])

 Table (table) - Table or step to perform the transformation on.
 ValueColumnNameList (list of text) - Name of the columns containing the lookup value as a list (e.g. {"Col1","Col2","Col3"} for

multicolumn, or {"Col1"} for a single column).
 LookupTable (table) - Table to lookup the value from.
 LookupValueColumnNameList (list of text) - Name of columns to lookup (e.g. {"Col1","Col2","Col3"} for multicolumn, or

{"Col1"} for a single column).
 LookupReturnColumnName (text) - Name of the column to return value from.
 NewColumnName (text) - Name of the column to be added.
 [ReturnOptions] (text) - Which item(s) should the lookup return.

 "First": Return the first item.
 "Last": Return the last item.
 [any other value] / null: Return all items.

NOTES:
 ValueColumnNameList and LookupValueColumnNameList must contain the same number of items in the same order.

Data Category

Page 42

Data Type
Functions

EXAMPLE

The source data includes columns with various data types.

Detecting data types hardcodes the column names into the M code. If column names could change, using fxAutoDetectDataType
avoids using the names explicitly

 #"Promoted Headers": Name of previous step
 0.95: Data Type is applied if 95% of the sample is of a specific type
 10: Data Type is determined based on the first 10 rows

Result:

fxAutoDetectDataType
PURPOSE:
Auto applies data types based on the data in a column.

SYNTAX:
fxAutoDetectDataType (Table, [Threshold], [SampleSize])

 Table (table) - Table or step to perform the transformation on.
 [Threshold] (number) - Declare the % of valid items before applying the data type (e.g. 0.75 - 75% of the data needs to be of a

specific data type otherwise treated as 'any’).
 If omitted, default value is 1 (e.g., 100%).

 [SampleSize] (number) - Declare how many records to include in the sample.
 If omitted, default value is 10.

NOTES:
 On large data sets, this transformation can be slow, so recommended to always run on a sample.
 Where SampleSize exceeds the number of rows, the full data set is used.
 Using a Threshold < 0 or > 1 results in all columns being 'any' data type.
 DateTime data types are converted to Date where the time value is 00:00:00.
 Detects Whole Numbers, Decimal Numbers, Dates, DateTimes, Logical and Text. Others treated as 'any' or as 'text'.

PURPOSE:
Auto applies data types based on the data in a column.

SYNTAX:
fxAutoDetectDataType (Table, [Threshold], [SampleSize])

 Table (table) - Table or step to perform the transformation on.
 [Threshold] (number) - Declare the % of valid items before applying the data type (e.g. 0.75 - 75% of the data needs to be of a

specific data type otherwise treated as 'any’).
 If omitted, default value is 1 (e.g., 100%).

 [SampleSize] (number) - Declare how many records to include in the sample.
 If omitted, default value is 10.

NOTES:
 On large data sets, this transformation can be slow, so recommended to always run on a sample.
 Where SampleSize exceeds the number of rows, the full data set is used.
 Using a Threshold < 0 or > 1 results in all columns being 'any' data type.
 DateTime data types are converted to Date where the time value is 00:00:00.
 Detects Whole Numbers, Decimal Numbers, Dates, DateTimes, Logical and Text. Others treated as 'any' or as 'text'.

Based on: https://datachant.com/2018/05/14/automatic-detection-of-column-types-in-powerquery/ by Gil Raviv

Page 45

Ranking
& Order

Functions

EXAMPLE

The source file includes the following Table.

Use fxRowNumberByGroup to add a row number for each item in a group.

 #"Changed Type": Name of previous step
 {"Item"}: The list of columns to group by. Include more column names to increase granularity of groups e.g. {"Item", "Size"}
 "Row Number": Name of the column to add.
 false: Data presented in grouped order. Use true to present in original data order.

Result:

fxRowNumberByGroup
PURPOSE:
Adds a row number for each item in a group.

SYNTAX:
fxRowNumberByGroup (Table, GroupByColumnNamesList, NewColumnName, [RetainOrder])

 Table (table) - Table or step to perform the transformation on.
 GroupByColumnNamesList (list of text) - List of the column names to group by.
 NewColumnName (text) - Name of the column to add.
 [RetainOrder] (logical) - Should data be presented in the original order.

 true: values are returned to their original order.
 false / null: values ordered within each group.

NOTES:
 (none)

PURPOSE:
Adds a row number for each item in a group.

SYNTAX:
fxRowNumberByGroup (Table, GroupByColumnNamesList, NewColumnName, [RetainOrder])

 Table (table) - Table or step to perform the transformation on.
 GroupByColumnNamesList (list of text) - List of the column names to group by.
 NewColumnName (text) - Name of the column to add.
 [RetainOrder] (logical) - Should data be presented in the original order.

 true: values are returned to their original order.
 false / null: values ordered within each group.

NOTES:
 (none)

Page 47

Alpha Row Numbers

Bravo Row Numbers

Charlie Row Numbers

Date & Time
Functions

EXAMPLE

Start with a Blank Query:
 In Excel, click Data > Get Data > From Other Sources > Blank Query
 In Power Query, click Home > New Sources > Other Sources > Blank Query

Use the fxCalendarTable function to generate a calendar table.

Scenario #1: Calendar table from 1 March 2022 to 31 March 2023

 #date(2022,3,1): The date for 1 March 2022
 #date(2022,3,1): The date for 31 March 2023

Scenario #2: Calendar table from 1 March 2022 for 400 days

 #date(2022,3,1): The date for 1 March 2022
 null: End date not provided. Base the calendar table on duration
 400: number of days to include in the calendar table

Result:

fxCalendarTable
PURPOSE:
Creates a calendar table based on start date & end date, or start date & duration.

SYNTAX:
fxCalendarTable (StartDate, [EndDate], [DaysDuration])

 StartDate (date) - The first date in the calendar.
 [EndDate] (date) - The last date in the calendar.
 [DaysDuration] (number) - The number of days from the start date.

NOTES:
 If EndDate is provided, a calendar is created using StartDate & EndDate.
 If EndDate is null, a calendar is created using StartDate & DaysDuration.

PURPOSE:
Creates a calendar table based on start date & end date, or start date & duration.

SYNTAX:
fxCalendarTable (StartDate, [EndDate], [DaysDuration])

 StartDate (date) - The first date in the calendar.
 [EndDate] (date) - The last date in the calendar.
 [DaysDuration] (number) - The number of days from the start date.

NOTES:
 If EndDate is provided, a calendar is created using StartDate & EndDate.
 If EndDate is null, a calendar is created using StartDate & DaysDuration.

Alternative ways to generate dates:

• Specific date:
#date(2023,3,31)

• Specific date from text (local)
Date.From("31/01/2023")
Example is dd/mm/yyyy, use your local format

• Specific date from text (ISO8601):
Date.From("2023-01-31")

• Today’s date (local):
Date.From(DateTimeZone.LocalNow())

• Today’s date (UTC):
Date.From(DateTimeZone.UtcNow())

• Earliest date in date column:
List.Min(QueryName[DateColumn])

• Latest date in date column:
List.Max(QueryName[DateColumn])

• Parameter Dates:
Get dates from a worksheet using
fxGetNameParameter or fxGetTableParameter

Alternative ways to generate dates:

• Specific date:
#date(2023,3,31)

• Specific date from text (local)
Date.From("31/01/2023")
Example is dd/mm/yyyy, use your local format

• Specific date from text (ISO8601):
Date.From("2023-01-31")

• Today’s date (local):
Date.From(DateTimeZone.LocalNow())

• Today’s date (UTC):
Date.From(DateTimeZone.UtcNow())

• Earliest date in date column:
List.Min(QueryName[DateColumn])

• Latest date in date column:
List.Max(QueryName[DateColumn])

• Parameter Dates:
Get dates from a worksheet using
fxGetNameParameter or fxGetTableParameter

Page 49

EXAMPLE

Start with a manual table of period end dates. In this example: 4-4-5 calendar with closest Sunday to 31 March as the year end.
date.

Use the fxCalendarTableNonStandard function to generate a calendar table.

 #"Changed Type": Name of previous step
 "Period End Date": Column containing the period end dates
 "Date": Name for the new date column

Result:

fxCalendarTableNonStandard
PURPOSE:
Creates a calendar table from a table of non-calendar periods.

SYNTAX:
fxCalendarTableNonStandard (Table, PeriodEndDateColumnName, NewDateColumnName)

 Table (table) - Table containing data about the period ends.
 PeriodEndDateColumnName (text) - Name of column containing the period end date.
 NewDateColumnName (text) - Name to give to the new date column.

NOTES:
 (None)

PURPOSE:
Creates a calendar table from a table of non-calendar periods.

SYNTAX:
fxCalendarTableNonStandard (Table, PeriodEndDateColumnName, NewDateColumnName)

 Table (table) - Table containing data about the period ends.
 PeriodEndDateColumnName (text) - Name of column containing the period end date.
 NewDateColumnName (text) - Name to give to the new date column.

NOTES:
 (None)

Date: Full calendar table Period End Date, Period and Year
expanded for each date

Page 50

EXAMPLE

The source data includes a date column.

The Financial Year ends in March. Use fxFinancialPeriod to add the financial year quarter, or month. Example below adds a month.

 #"Changed Type": Name of previous step
 "Date": Name of the date column
 3: The Financial Year ends in March; March is the 3rd month of the calendar year.
 "Fin Month": The new column name
 "Month": Adds a financial Month column.

Result:

Result: Financial Month & Financial Year both added

fxFinancialPeriod
PURPOSE:
Adds a Financial Month, Year, or Quarter column.

SYNTAX:
fxFinancialPeriod (Table, DateColumnName, FinancialYearEndMonth, NewColumnName, TimePeriod)

 Table (table) - Table or step to perform the transformation on.
 DateColumnName (text) - Name of the column containing dates.
 FinancialYearEndMonth (number) - Month number of the financial year end.
 NewColumnName (text) - Name of the new column.
 TimePeriod (text) - Set return value as Financial Year or Financial Month.

 "Month": Returns the Financial Month.
 "Quarter": Return the Financial Quarter.
 "Year": Return the Financial Year.

NOTES:
 Assumes financial periods end on the last day of each month.

PURPOSE:
Adds a Financial Month, Year, or Quarter column.

SYNTAX:
fxFinancialPeriod (Table, DateColumnName, FinancialYearEndMonth, NewColumnName, TimePeriod)

 Table (table) - Table or step to perform the transformation on.
 DateColumnName (text) - Name of the column containing dates.
 FinancialYearEndMonth (number) - Month number of the financial year end.
 NewColumnName (text) - Name of the new column.
 TimePeriod (text) - Set return value as Financial Year or Financial Month.

 "Month": Returns the Financial Month.
 "Quarter": Return the Financial Quarter.
 "Year": Return the Financial Year.

NOTES:
 Assumes financial periods end on the last day of each month.

Page 51

EXAMPLE

Start with a column of times (or can be datetimes)

Use fxTimeGroups to group into 15-minute segments

 "Changed Type": Name of previous step
 "Time": Name of column containing the times
 "Minutes": Unit for creating the time groups
 15: Group into 15 minute segments
 "Down": Rounds time down to
 "Rounded Time": Name of the new column

Result:

fxTimeGroups
PURPOSE:
Groups time into Hour, Minute and Second time segments.

SYNTAX:
fxTimeGroups (Table, ColumnName, Units, UnitGroupSize, RoundType, NewColumnName)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of the column containing the time or datetime.
 Units (text) - Text value of time units to group by.

 "Hours": Hour time segments.
 "Minutes": Minute time segments.
 "Seconds" / [any other value] / null: Second time segments.

 UnitGroupSize (number) - The length of each unit group (e.g. When Units = "Minutes", 5 is 5 Minute segments).
 RoundType (text) - Text value of the how to round each value.

 "Up": Round up.
 "Nearest": Round to nearest.
 "Down" / [any other value] / null: Round down.

 NewColumnName (text) - The name of the column to be added.

NOTES:
 (None)

PURPOSE:
Groups time into Hour, Minute and Second time segments.

SYNTAX:
fxTimeGroups (Table, ColumnName, Units, UnitGroupSize, RoundType, NewColumnName)

 Table (table) - Table or step to perform the transformation on.
 ColumnName (text) - Name of the column containing the time or datetime.
 Units (text) - Text value of time units to group by.

 "Hours": Hour time segments.
 "Minutes": Minute time segments.
 "Seconds" / [any other value] / null: Second time segments.

 UnitGroupSize (number) - The length of each unit group (e.g. When Units = "Minutes", 5 is 5 Minute segments).
 RoundType (text) - Text value of the how to round each value.

 "Up": Round up.
 "Nearest": Round to nearest.
 "Down" / [any other value] / null: Round down.

 NewColumnName (text) - The name of the column to be added.

NOTES:
 (None)

15-m
inute segm

ents

Page 52

EXAMPLE

Start with a Blank Query:
 In Excel, click Data > Get Data > From Other Sources > Blank Query
 In Power Query, click Home > New Sources > Other Sources > Blank Query

Use fxTimeTable function to generate a time table.

Scenario #1: Time table in hours

 "Hours": Unit for creating a time table in hours

Scenario #2: Time table in seconds

 "Minutes": Unit for creating a time table in minutes

Scenario #3: Time table in seconds

 Defaults to seconds

fxTimeTable
PURPOSE:
Creates a time table based in hour, minute, or second intervals.

SYNTAX:
fxTimeTable ([Units])

 [Units] (text) - Text value of time units.
 "Hours": Hour time segments.
 "Minutes": Minute time segments.
 "Seconds" / [any other value] / null: Second time segments.

NOTES:
 (None)

PURPOSE:
Creates a time table based in hour, minute, or second intervals.

SYNTAX:
fxTimeTable ([Units])

 [Units] (text) - Text value of time units.
 "Hours": Hour time segments.
 "Minutes": Minute time segments.
 "Seconds" / [any other value] / null: Second time segments.

NOTES:
 (None)

Scenario #1 Result (Hours):

Scenario #2 Result (Minutes):

Scenario #3 Result (Seconds):

Page 53

Files & Folder
Functions

EXAMPLE

Folder contains 3 workbooks. The workbooks contain 3 worksheets
• Example Excel Workbook #1 Data.xlsx [Data #1-1, Data #1-2, Data #1-3]
• Example Excel Workbook #2 Data.xlsx [Data #2-1, Data #2-2, Data #2-3]
• Example Excel Workbook #2 Data.xlsx [Data #3-1, Data #3-2, Data #3-3]

In Power Query the folder connection shows the workbooks

Use fxCombineWorksheetsByName function to combine all worksheets with -2 in the name

 #"Removed Other Columns": Name of previous step
 "Content": Column with the workbook binaries
 "-2": Object name string to find
 true: Partial string match permitted
 "Sheet": Combine worksheets
 true: Promote headers in each worksheet
 true: Auto expand the data

fxCombineWorksheetsByName
PURPOSE:
Combine worksheets from workbooks in a folder using sheet or table names.

SYNTAX:
fxCombineWorksheetsByName (Table, ContentColumnName, ObjectName, PartialMatch, SheetOrTable,
[PromoteHeaders], [AutoExpand])

 Table (table) - Table or step containing the files in the folder.
 ContentColumnName (text) - Name of column containing the workbook binaries.
 ObjectName (text) - The table or sheet name to combine.
 PartialMatch (logical) - Determines if only partial match required (includes ignoring case).

 true: Partial match permitted.
 false / null: Exact match only.

 SheetOrTable (text) - Determine if objects to combine are sheets or tables.
 [PromoteHeaders] (logical) - Should headers be promoted.

 true: Promote headers.
 false / null: Do not promote headers.

 [AutoExpand] (logical) - Should data should be expanded automatically (dynamically).
 true: Expand data.
 false / null: Do not expand data.

NOTES:
 (None)

PURPOSE:
Combine worksheets from workbooks in a folder using sheet or table names.

SYNTAX:
fxCombineWorksheetsByName (Table, ContentColumnName, ObjectName, PartialMatch, SheetOrTable,
[PromoteHeaders], [AutoExpand])

 Table (table) - Table or step containing the files in the folder.
 ContentColumnName (text) - Name of column containing the workbook binaries.
 ObjectName (text) - The table or sheet name to combine.
 PartialMatch (logical) - Determines if only partial match required (includes ignoring case).

 true: Partial match permitted.
 false / null: Exact match only.

 SheetOrTable (text) - Determine if objects to combine are sheets or tables.
 [PromoteHeaders] (logical) - Should headers be promoted.

 true: Promote headers.
 false / null: Do not promote headers.

 [AutoExpand] (logical) - Should data should be expanded automatically (dynamically).
 true: Expand data.
 false / null: Do not expand data.

NOTES:
 (None)

Page 55

Result:

fxCombineWorksheetsByName (page 2)

Sheet: D
ata #1-2

Sheet: D
ata #2-2

Sheet: D
ata #3-2

Page 56

EXAMPLE

Folder contains 3 workbooks. The workbooks contain 3 worksheets
• Example Excel Workbook #1 Data.xlsx [Data #1-1, Data #1-2, Data #1-3]
• Example Excel Workbook #2 Data.xlsx [Data #2-1, Data #2-2, Data #2-3]
• Example Excel Workbook #2 Data.xlsx [Data #3-1, Data #3-2, Data #3-3]

In Power Query the folder connection shows the workbooks

Use fxCombineWorksheetsByPosition function to combine the 2nd sheet in each workbook

 #"Removed Other Columns": Name of previous step
 "Content": Column with the workbook binaries
 1: Combine 2nd sheet from each workbook
 "Sheet": Combine worksheets
 true: Promote headers in each worksheet
 true: Auto expand the data

fxCombineWorksheetsByPosition
PURPOSE:
Combine worksheets from workbooks in a folder using sheet or table position.

SYNTAX:
fxCombineWorksheetsByPosition (Table, ContentColumnName, Position, SheetOrTable, [PromoteHeaders], [AutoExpand])

 Table (table) - Table or step containing the files in the folder.
 ContentColumnName (text) - Name of column containing the workbook binaries.
 Position (number) - Number of the sheet or table to combine (zero-based).
 SheetOrTable (text) - Determine if objects to combine are sheets or tables.
 [PromoteHeaders] - (logical) - Should headers be promoted.

 true: Promote headers.
 false / null: Do not promote headers.

 [AutoExpand] (logical) - Should data should be expanded automatically (dynamically).
 true: Expand data.
 false / null: Do not expand data.

NOTES:
 (None)

PURPOSE:
Combine worksheets from workbooks in a folder using sheet or table position.

SYNTAX:
fxCombineWorksheetsByPosition (Table, ContentColumnName, Position, SheetOrTable, [PromoteHeaders], [AutoExpand])

 Table (table) - Table or step containing the files in the folder.
 ContentColumnName (text) - Name of column containing the workbook binaries.
 Position (number) - Number of the sheet or table to combine (zero-based).
 SheetOrTable (text) - Determine if objects to combine are sheets or tables.
 [PromoteHeaders] - (logical) - Should headers be promoted.

 true: Promote headers.
 false / null: Do not promote headers.

 [AutoExpand] (logical) - Should data should be expanded automatically (dynamically).
 true: Expand data.
 false / null: Do not expand data.

NOTES:
 (None)

Page 57

Result:

fxCombineWorksheetsByPosition (page 2)

Sheet: D
ata #1-2

Sheet: D
ata #2-2

Sheet: D
ata #3-2

Page 58

EXAMPLE

A workbook has a table which includes the File Path and Sheet Names to combine.

Use fxExcelDataFromList to combine the data from different worksheets in different files.
Note: Best used where files not stored in a single folder, or where multiple sheets with different names exist in a workbook.

 #"Changed Type": Name of previous step
 "File Path": Column name containing the file path
 "Sheet Name": Column name containing the sheet names to combine
 true: headers are promoted in each sheet
 false: columns are not expanded dynamically

Result: Files combined - data ready for expansion:

Alternative Result: Change AutoExpand to true:

fxExcelDataFromList
PURPOSE:
Uses a table with file path and data columns to get data from a list of Excel Workbooks.

SYNTAX:
fxExcelDataFromList (Table, FilePathColumnName, DataColumnName, [PromoteHeaders], [AutoExpand])

 Table (table) - Table or step to perform the transformation on.
 FilePathColumnName (text) - The column name which contain the file paths.
 DataColumnName (text) - The name of the data object in the workbook.
 [PromoteHeaders] (logical) - Should headers be promoted prior to expanding.

 true: Promote headers.
 false / null: Do not promote headers.

 [AutoExpand] (logical) - Should data should be expanded automatically (dynamically).
 true: Expand data.
 false / null: Do not expand data.

NOTES:
 (None)

PURPOSE:
Uses a table with file path and data columns to get data from a list of Excel Workbooks.

SYNTAX:
fxExcelDataFromList (Table, FilePathColumnName, DataColumnName, [PromoteHeaders], [AutoExpand])

 Table (table) - Table or step to perform the transformation on.
 FilePathColumnName (text) - The column name which contain the file paths.
 DataColumnName (text) - The name of the data object in the workbook.
 [PromoteHeaders] (logical) - Should headers be promoted prior to expanding.

 true: Promote headers.
 false / null: Do not promote headers.

 [AutoExpand] (logical) - Should data should be expanded automatically (dynamically).
 true: Expand data.
 false / null: Do not expand data.

NOTES:
 (None)

Page 59

EXAMPLE

To connect to a SharePoint folder without navigating through the hierarchy use the fxFilesInSharePointFolder function.

• "https://xxxxxxxxxxx.sharepoint.com/sites/SharePointExample/Shared%20Documents/Example/": SharePoint URL for the
folder.

• true: Sub folders are included.

NOTE:
There is no example file for this function. Apply the function to your SharePoint environment.

fxFilesInSharePointFolder
PURPOSE:
Gets all the files in a named SharePoint folder based on a folder URL.

SYNTAX:
fxFilesInSharePointFolder (FullURL, [IncludeSubFolders])

 FullURL (text) - The full URL of the SharePoint folder.
 [IncludeSubFolders] (logical) - Should the files in subfolders be included in the files returned.

 true: Include subfolders.
 false / null: Exclude subfolders.

NOTES:
 (None)

PURPOSE:
Gets all the files in a named SharePoint folder based on a folder URL.

SYNTAX:
fxFilesInSharePointFolder (FullURL, [IncludeSubFolders])

 FullURL (text) - The full URL of the SharePoint folder.
 [IncludeSubFolders] (logical) - Should the files in subfolders be included in the files returned.

 true: Include subfolders.
 false / null: Exclude subfolders.

NOTES:
 (None)

Page 60

Nested Table
Functions

EXAMPLE

A workbook contains 3 sheets (Data #1, Data #2, Data #3). Each worksheet has different number of blank rows at the top before
the data, multiple header rows and a blank column at the start.

fxTransformNestedTable
PURPOSE:
Performs table transformations on nested tables.

SYNTAX:
fxTransformNestedTable (Table, ColumnName, eachFunctionList)

 Table (table) - Table or step containing the nested tables.
 ColumnName (text) - Name of column containing the nested tables.
 eachFunctionList (List of nested functions) - List of functions to perform on the nested tables.

 Every function must be preceded by the word each.
 Refer to nested tables with an underscore (_).

NOTES:
 (None)

PURPOSE:
Performs table transformations on nested tables.

SYNTAX:
fxTransformNestedTable (Table, ColumnName, eachFunctionList)

 Table (table) - Table or step containing the nested tables.
 ColumnName (text) - Name of column containing the nested tables.
 eachFunctionList (List of nested functions) - List of functions to perform on the nested tables.

 Every function must be preceded by the word each.
 Refer to nested tables with an underscore (_).

NOTES:
 (None)

Varying blank
rows at the top

Multiple header rows

Bl
an

k
co

lu
m

n
Bl

an
k

co
lu

m
n

Bl
an

k
co

lu
m

n
Page 62

fxTransformNestedTable (page 2)

In Power Query connect to the workbook.

Use the fxTransformNestedTable function to apply the following functions on each nested table:
 fxRemoveTopBottomNull
 fxFlattenHeaderRows
 fxRemoveNullColumns

 Source: Name of previous step
 "Data": Name of column containing the nested tables
 {

each fxRemoveTopBottomNull(_,"Column3","Top"),
each fxFlattenHeaderRows(_,3,"|","Right"),
each fxRemoveNullColumns(_)
}: Functions list applied to the nested tables.

Result:
The nested have been transformed into a consistent data structure. After expanding the Data column, the data looks like the
following:

NOTE: Using native Power Query table functions:

The fxTransformNestedTable function is also compatible with native Power Query functions. The example below applies the
Table.PromoteHeaders and Table.RemoveFirstN functions.

= fxTransformNestedTable(Source,"Data", {
each Table.PromoteHeaders(_),
each Table.RemoveFirstN(_,1)
})

NOTE: Using native Power Query table functions:

The fxTransformNestedTable function is also compatible with native Power Query functions. The example below applies the
Table.PromoteHeaders and Table.RemoveFirstN functions.

= fxTransformNestedTable(Source,"Data", {
each Table.PromoteHeaders(_),
each Table.RemoveFirstN(_,1)
})

Page 63

NOTE
Each function is a separate item in a list; therefore,
each function must be separated by a comma.

NOTE
Each function is a separate item in a list; therefore,
each function must be separated by a comma.

