' 30 most useful

VBA Macros

EVACEL

OFF THE

30 most
useful Excel

VBA Macros

https.//exceloffthegrid.com

Copyright
Copyright © Excel Off The Grid

All rights reserved. This publication is protected by copyright. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, except as
permitted by the copyright holder.

Limit of liability/disclaimer of warranty

Because of the possibility of human or mechanical error, the copyright holder does not guarantee
the accuracy, adequacy or completeness of any information. The copyright holder accepts no liability
for any inaccuracy, error of omission, or for the results obtained, regardless of cause from the use of
any information.

The copyright holder does not warrant or guarantee that the information contained in the work will
meet your requirement or its fitness for a particular purpose.

Want more Macros?

You’ve got 30 macros in this book already, now get 70 more with 33% off.

Do you know the fastest way to learn foreign languages? Itis to read, write, p————————
speak, and think in that language as often as possible. Apart from speaking,
programming languages are no different. The more you immerse yourself in
that language, the faster you will pick it up.

Therefore, what most people like you need is lots of examples that you can
practice. From that you can learn how the code is structured, so you can
apply that in your own macros.

That is why the 100 Excel VBA Macros eBook exists. It's the book for all
intermediate and advanced Excel users who want to learn how to read and
write Excel macros, save time, and stand out from their peers.

Get instance access now:

https://exceloffthegrid.com/100-excel-vba-macros/

Use discount code vbabook33 at checkout to get 33% off

https://exceloffthegrid.com/100-excel-vba-macros/

Contents

PART ONE: HOW tO USE VBA MACIOSvviiiiiiiiiiiiiiiiiiitiee ittt sra e s srae e e 9
HOW t0 USE this DOOK ...t 11
WAt S VBA? ..ttt e e et e sttt e e sttt e e s st e e e e s ate e e e sataeeeestaeeeessaeeeessaeeesnsaeeesnnsenaennn 12

Advantages Of USING VBAooiiiiie ettt e st e e s stee e e e atae e e esabaeeeesnbaeeessbaeeesnnsseeeens 12
What iS PrOSrammMIiNG? ..occuviiiiiiiiee et e et e e et e e e e e ta e e e s ebae e e s ebteeeessteeeesnseeeeesassasaesnes 12
What is the difference between a Macro and VBA?.........cociiiiiieiiienieeeeeeee e 13
Y=y [T o I (=] PSRN 14
IMACIO SECUNITY SETEINES ..iiiiiiiiiiieee ettt ettt e e et e e e e e s s s st bt e e e e s s sssssbaneeeeesssasssreaeaeens 14
Enable the Developer FIDDON ... e ree e s abe e e s e sareeas 15
File format for macro enabled files...........co i 16
Personal Macro WOIrKDOOKccueiuiiiiiiiee ettt e 16
Using the Visual BasiC EQitOr.....cccuuiiiiiiieei ittt sttt e e e s e abee e s e sree e s e nbae e e e naneeas 18
The Visual Basic EAitor WINGOW.........coocuiiiiiiiniieeiie ettt ettt st ettt e sveeesaree s 18
YU o] oYL a¥ == T 0 0 F= Lol o TNt 19
Running a macro from within Visual Basic EitOr.........ccueiieiiiiieiiiieee et 19
Running @ macro from Within EXCEluueieeiiiiiecee ettt et 19
PART TWO: VBA IMACIOS ..c.uveeuiietieitesite sttt ettt site st st s et er e e s s e sae e saresbe s bt e sneesseesmeesaneeneesseesnnesanenas 23
001 - Hide all selected ShEELScccoriiiiiiieeeeee e e 25
002 = UNhidE @ll SHEELSeiieieteeee ettt ettt st e be e sbeens 25
003 — Protect all selected WOrkShEetscoiuiiiieiieiiiee e 26
004 — Unprotect all WOrKSNEEES.....cccuviiiictiiee ettt et e e e rae e e e 27
005— Lock cells containing fOrmMUIAScccuviiiiiiiiee e bre e e e 28
006 — Hide formulas When protected.......c..eeeiiiiiiiciiie et 30
007 — Save time stamped BackUP fil@cccueiii ittt 31
008 — Prepare WOrkbooK fOr SAVINGcoccuiiiiieiiee ettt et e e e tre e e e e bee e e e eanes 31
009 — Convert merged Cells 10 CENTEI @CIOSS......uviiiiciiieeiccieee ettt et e e etre e e e erre e e e sereaeeeenes 33
010 — Fit SEIECTION 1O SCIEEN ...eoutieiieiieeite ettt sttt et e s e s e neens 34
011 — Flip number signage on selected Cells.........ooiiiiiiiiie i 34
012 — Clear all data CelIS....c.cuuiiiie ettt e e e sreeeaee 35
013 — Add prefix to each cell in SEIECTIONccocviiii et 35
014 — Add suffix to each cell in SeleCtioNc.eevierieriiece e 36
015 — REVEISE FOW OFUEIeiuiieuiieiieritenite ettt ettt sit e st s et e bt e sbe e st e st et e e beesseesaeesanesaneeneenes 37
016 — ReVErse COIUMN OFAEIiiiiiiiiiieeiee ettt ettt s e e sbe e e san e sare e sneeesaneeenne 38

017 — TranSPOSE SEIECTION. ...cciiiiiieeiciee ettt e et e et e e et e e e e bae e e e ebteeeesbtaeeesnsteeeesstaeaenanes 39

018 — Create red box around Selected areascocueeueeeerriieieerieree e 41
019 — Delete all red boxes 0N activVe ShEEtcocuiiiiiiiiiee e 42
020 —Save selected Chart @S @an IMABE ...cccuvieiieciiiie ettt et e e s sbree e e serreee e sereaeeesanes 42
021 — Resize all charts to same as active Chart.........cocoeiiieieneeee e 43
022 — Refresh all Pivot Tables in WOrkbookoceoiiiiiiiiiiiee e 44
023 —Turn off auto fit columns on all Pivot Tablescooiiiiiiieiieeeeeee e 44
024 — Get color code from Cell fill COIONuiiiiiiiiie e 45
025 — Create a table Of CONTENTS......coi it 46
026 — Excel to speak the Cell CONTENTSvviiieiiiee e et 47
027 — Fix the range of cells which can be scrolled...........ccuviireoiii i 47
028 — Invert the Sheet SEIECLIONcii it e e 48
029 — Assign @ MAcro t0 @ SNOMCUL KEY c...uvviiiiiiiee ittt e e ssarae e 50
030 — Apply single accounting underling to Selectioncocuveciiireieiie e 50

PART ONE:

How to use VBA
Macros

10

How to use this book

The macros and techniques contained in this book are illustrations of what can be achieved with
VBA. In most circumstances, the code will need to be customized to your specific needs. As the
macro segments are illustrations, they are not all useful in their own right.

| have tried to write the code so it can be (a) understood by those with limited experience of VBA
and (b) easily customized to meet user requirements. This means that each macro is not necessarily
written in the most efficient manner and excludes extensive error checking.

Support files

All the macros are available in the support file, which was distributed in the same zip file as this
Ebook.

Found an error?

Whilst | try to create safe and reliable code segments, | can (and often do) make mistakes. Please
backup copies of your files before using any code in this book. Backing up ensures that if anything
goes seriously wrong, you can revert to a previous working version.

If you do find errors, please let me know. Go to https://exceloffthegrid.com/contact/ to contact
me and provide as much information about the error as possible. Hopefully, over time, with your
feedback, | can eradicate all the errors and turn this into an even better resource.

11

https://exceloffthegrid.com/contact/

What is VBA?

Visual Basic for Applications (VBA) is the programming language created by Microsoft to control
parts of their applications. Most things which you can do with the mouse or keyboard in the
Microsoft Office suite, you can also do using VBA. For example, in Excel, you can create a chart;
you can also create a chart using VBA, it is just another method of achieving the same thing.

Advantages of using VBA

Since VBA code can do the same things as we could with the mouse or keyboard, why bother to
use VBA at all?

Saves time:

VBA code will operate at the speed your computer will allow, which is still significantly faster than
you can operate. For example, if you have to open 10 workbooks, print the documents, then close
the workbook, it might take you 2 minutes with a mouse and keyboard, but with VBA it could take
seconds.

Reduces errors:

Do you ever click the wrong icons or type the wrong words? Me too, but VBA doesn’t. It will do the
same task over and over again, without making any errors. Don’t get me wrong, you still have to
program the VBA code correctly. If you tell it to do the wrong things 10 times, then it will. But if
we can get it right, then it can remove the errors created by human interaction.

Completes repetitive actions without complaining:

Have you ever had to carry out the same action many times? Maybe creating 100 charts, or printing
100 documents, or changing the heading on 100 spreadsheets. That’s not fun, nobody wants to do
that. But VBA is more than happy to do it for you. It can do the same thing in a repetitive way
(without complaining). In fact, repetitive tasks is one of the things VBA does best.

Integration with other applications:

You can use VBA in Word, Access, Excel, Outlook and many other programs, including Windows
itself. But it doesn’t end there, you can use VBA in Excel to control Word and PowerPoint, without
even needing to open those applications.

What is programming?

Programming is simply writing words in a way which a computer can understand. However,
computers are not particularly flexible, so we have to be very specific about what we want the
computer to do, and how we tell it to do it. The skill of programming is learning how to convey the
request to the computer as clearly, as simply and as efficiently as possible.

12

What is the difference between a Macro and VBA?

This is a common question which can be confusing. Put simply, VBA is the language used to write
a macro — just in the same way as a paragraph might be written using the English language.

The terms ‘macro’ and ‘VBA’ are often used interchangeably.

The golden rule of learning VBA

If you are still learning to write VBA, there is one thing which will help you. While it may be common
practice, to copy and paste code, it will not help you to learn VBA quickly. Here is the one rule | am
going to ask you to stick to... type out the code yourself.

Why am | asking you to do this? Because it will help you learn the VBA language much faster.

Let’s get started

Now you know what VBA is, why you should use it, and the golden rule, so there is only one thing
left to do... let’s get started!

13

[]
Setting up Excel
Before you can get stuck in with using the code in this book, you must first have Excel set up
correctly. This involves:
1) Ensuring the correct macro security settings have been applied

2) Enabling the Developer ribbon.

Macro security settings

Macros can be used for malicious purposes, such as installing a virus, recording key-strokes, etc.
This can be blocked with the security settings. However, if the settings are set too high, you cannot
run any macros, or too low, you will not be protected. Neither of these is a good option.

Let’s apply suitable settings which will give you the power to decide when to allow macros or not.
1. In Excel, click File > Options

2. Inthe Excel Options dialog box, click Trust Centre > Trust Centre Settings...

Excel Options

General =
@ Help keep your documents safe and your computer secure and healthy.
Formulas
Data Security & more
Proofing Visit Office.com to learn more about protecting your privacy and security.
Save Microsoft Trustworthy Computing
Language

Microsoft Excel Trust Center
Ease of Access

) The Trust Center contains security and privacy settings. These settings help keep your =
Advanced computer secure. We recommend that you do not change these settings. Trust Center Settings...
Customize Ribbon L

CQuick Access Toolbar

Add-ins

3. Inthe Trust Centre dialog box, click Macro Settings > Disable all macros with notification.

14

Trust Center

Trusted Publishers
fHsted FUblinEr Macro Settings

Trusted Locations

Disable all macros without notification
Trusted Docurnents

® Disable all macros with notification

Trusted Add-in Catalogs Disable all macros except digitally signed macros

Add-ins Enable all macros (not recommended; potentially dangerous code can run)

XS

Developer Macro Settings

[[] Trust access to the VBA project object model

Protected View

Message Bar
External Content
File Block Settings

Privacy Options

4. Click OK to close the Trust Centre, then OK again to close the Excel Options.

Workbooks containing macros will now be automatically disabled until you click the Enable Content
button at the top of the screen.

Enable the Developer ribbon

The Developer ribbon is the place where all the VBA tools are kept. It is unlikely that this is already
enabled, unless you or your IT department have already done so.

Look at the top of your Excel Window if you see the word ‘Developer’ in the menu options, then
you are ready to go. You can skip straight ahead to the next part. However, if the ‘Developer’ ribbon
is not there, just follow these instructions.

1. In Excel, click File > Options
2. Inthe Excel Options dialog box, click Customize Ribbon

3. Ensure the Developer option is checked

15

Excel Options

General .
Eé“%l Customize the Ribbon.
Formulas
Choose commands from: (& Customize the Ribbon: G
Data
Popular Commands = Main Tabs 7
Proofing
Save Add or Remove Filters - Main Tabs
All Chart Types... Background Removal
Language orders 4 [Home
Eace of Access Calculate Now P insert
b - = Center & [0maw
B o =] Conditional Formatting L4 e
Advanced I Copy [Page Layout
] Customize Ribbon = - Formulas
b X Cut B [Data
Quick Acc A" Decrease Font Size Review
E Delete Cells...

Add-ins

i
=

Delete Sheet Columns
Delete Sheet Rows
Email

Trust Center

Fill Color New Tab (Custom)
Font b Add-ins
Font Color HHelp

Font Size
Format Cells
Format Painter
Freeze Panes 4
Increase Font Size

Insert Cells...

Insert Function...

Insert Picture

Insert Sheet Columns
Insert Sheet Rows
Insert Table Customizations:

Macros

2| Merge & Center - Import/Exporf z| i

Power Pivot

fvHENSE =BG P

4. Click OK to close the Excel Options

The Developer ribbon should now be visible at the top of the Excel window.

File format for macro enabled files

To save a workbook containing a macro, the standard .xIsx format will not work.

The following features cannot be saved in macro-free workbooks:

o = VB project
To save a file with these features, dick Mo, and then choose a macro-enabled file type in the File Type list.
Ta continue saving as a macro-free workbook, dick Yes,

Yes Mo Help

Generally, the .xIsm (Excel Macro-Enabled Workbook) file format should be used for workbooks
containing macros. However .xlam (Excel Add-in), .xIsb (Excel Binary Workbook) and .xlItx (Excel
Macro-Enabled Template) are scenario specific formats which can also contain macros.

The legacy .xls and .xla file formats can both contain macros. They were superseded in 2007, and
should now be avoided.

Basic rule is... if you don’t know, go for .xIsm.

Personal macro workbook

If we want macros to be reusable for many workbooks, often the best place to save them is in the
personal macro workbook.

A personal macro workbook is a hidden file which opens whenever the Excel application opens.

16

How to create a personal macro workbook?

A personal macro workbook does not exist by default; we have to create it. There are many ways
to do this, but the easiest is to let Excel do it for us.

1. Inthe ribbon, click Developer > Record Macro.

File Home »L Page Layout Formulas Data Review View Reporting Help Power Pivot
mall T I N R = N El, B s i
= 2 IEIF_X ansion Packs IT_‘
Visual Macros FEH Use Relative References Add- Excel COM Insert Design EVIM &3 p -
Basic M Macro Security ins Add-ins Add-ins ~ Mode [=!Run Dialog |;
Code Add-ins Controls XML

2. In the Record Macro dialog box, select Personal Macro Workbook from the drop-down
list.

Record Macro

Macro name:
Macrol

Shortcut key:
Ctrl+

St o in:
I Personal Macro Workbook ~

Description:
L
I Cancel
3. Click OK.

4. Do anything in Excel, such as typing your name into cell Al.

5. Click Developer > Stop Recording

File Home rL Page Layout Formulas Data Review View Reporting Help Power Pivot
] T\ |:| Stop Recording Ol/j @ @ ﬂ', @ [&] Properties @ &0 Import
o =N .)
Use Relative Ref: View Cod =3 Expansion Packs [
Visual Macros s mrmmlatmes Add- Excel COM Insert Design E‘ fewode Source ‘n_ b -
Basic A\ Macro Security ins Add-ins Add-ins ~ Mode [ElRun Dialog =
Code Add-ins Controls XML

6. Close all the open workbooks in Excel, this will force the personal macro workbook to be
saved. A warning message will appear, click Save.

/', Doyouwantto save the changes you made to the

JARN Personal Macro Waorkbook? If you click Save, the
macros will be available the next time you start
Microsoft Excel.

Save All Don't Save Cancel

In the next part, we will learn how to use the Visual Basic Editor, which gives us access to the

personal macro workbook.

17

Using the Visual Basic Editor

The Visual Basic Editor (or VBE as it can be known) is the place where we enter or edit VBA code.
The Visual Basic Editor is found within the Developer Ribbon

In Excel, click Developer > Visual Basic to open the VBE.

Alternatively, you could use the keyboard; press ALT+F11 (the + indicates that you should hold
down the ALT key, press F11, then release the ALT key), which toggles between the Excel window
and the VBE.

The Visual Basic Editor Window

The Visual Basic Editor contains four main sections.

48 Microsoft Visual Basic for Applications - PERSONALXLSB - [Modulel (Code]]
% File Edit View Insert Format Debug Run Tools Add-lns Window Help -8 X
EHE-d @9 pon @ | %AW @ | nacols - O kRaEE 0 =2 6 _
JProject - VBAProject & ‘:General] ﬂ ‘Macrm ﬂ
=l = Cption Explicit =
B@ VBAProject (myWorkbook.adsm) Sub Macrol()
=] icrosoft Excel Objects
: '
; Shestl (Sheet1) Macrol| Macro
Thisworkbook
B--@ VBAProject (PERSONALXLSB)
=5 Microsoft Excel Objects
; Shest1 (Sheet1) . Range ("ALl") .Select
H @This\"mrkhnﬂk Pro]ect ActiveCell.FormulaR1Cl = "Excel Off The Grid"
-5 Modules . Range ("A2") .Select
£t odket window End Sub
N Properties - Modulel & Code
[Module1 Module | window
Alphabetic | categorized | ~
(Name) Module 1 _J= LI—‘ —'I—
Immediate 5
-
. Immediate
Properties .
window window 2
«| 3

Within the top left of the VBE, we will see a list of items which can contain VBA code (known as the
project window)

Double-clicking any sheet name, workbook or module, will open the code window associated with
that item. VBA code is entered into the code window.

Unless you have specific reasons, the best option is to enter the macro into a module. To create a
module, click Insert > Module within the VBE.

18

Running a macro

There are many ways to run VBA code. This section is not exhaustive, but is intended to provide an
overview of the most common methods.

Running a macro from within Visual Basic Editor
When testing VBA code, it is common to execute that code from the VBE.

Click anywhere within the code, between the Sub and End Sub lines, choose one of the following
options:

1. Click Run > Run Sub/UserForm from the menu at the top of the VBE
2. Using the keyboard, you can press ALT+F5
3. Click the play button at the top of the VBE

%Eile Edit View Inzert rmat Debug

HEE-d u

Run | Too Add-Ins Window Help
Il Break Ctrl+Break
@ Beset

lﬂ Design Mode

The code you entered will be executed.

Running a macro from within Excel

Once the code has been tested and in working order, it is common to execute it directly within
Excel. There are lots of options for this too (including events, or user defined functions), however
the three most common methods | will show you are:

Run from the Macro window

1. Click View > Macros or Developer > Macros

File Lme Insert Page Layout Formulas Data Review View Reporting Help Power Pivot

@ E %Recurdl‘v’lacru @ {é}‘ E} Eﬁ[Prupertiez @ IE @Impoﬂ:

[FH Use Relative References E‘\View Code @Expan:won Packs

Visual Macros Add- Excel COM Insert Design Source
Easic W Macro Security ins Add-ins Add-ins ~ Mode E| Run Dialog
Code Add-ins Controls XML

2. Select the macro from the list and click Run.

19

Macro

Macro name:

ApplysentenceCace + Run
AddCustomFooter
AddCustomHeader Step Into
addPrefix
addRedBox Edit
addSuffix =

AllowGroupingOnAProtectedWorkbook =
Anlvientencel:ase
ApportionValueAcrossCells
AssigniMacroT aShortcut Delete
ChangeAllQuerieslinearRefresh
ChangeCaption Options..,

CnanseExcelu;erName v

Macros in: | All Open Workbooks ~

Description

Cancel

Create a custom ribbon

Having macros always available in the ribbon is a great time saver. Therefore, learning how to
customize the ribbon is useful.

1. In Excel, click File > Options
2. Inthe Excel Options dialog box, click Customize Ribbon

3. Click New Tab to create a new ribbon tab, then click New Group to create a section within
the new tab.

4. In the Choose commands from drop-down, select Macros. Select your macro and click
Add >> to move the macro it into your new group.

5. Use the Rename... button to give the tab, group or macro a more useful name.

Excel Options

General

Rename

E‘E] Customize the Ribbon.

Formulas

o Choose commands from: Customize tfl symbol:
ti "
aa. oIMacros 'I Main Tabs ﬁ@@& | AOD&&D ~
Proofing [2 DOBEoEIMD €«
Save k% AddCustomFooter - Main Tabs A v =S @ %} EI th D l;l O\ ?
AddCustemHeader F) 2
e 3} 3
Language addPrefix YEIESI qff,% 8 gg EOO
Ease of Access : addRedBox Insert ® % @ @ § 0 oo O u
ase of Access addSuffc [Draw | | J | | l:”:lg.
Advanced s AllowGroupingOnAProtectedWo.., EDZED!E@@ A @%
LpplySentenceCase i | e lmi e Rz
portionValueAcrossCells QD@EB? @ @: > % ? Dg.ﬂj
- AssignMacroToShortcut A X s gl\-r [':l — PFi=
Quick Acces ChangeAllQueriesLinearRefresh D LT} Eﬁ L+ rﬁl‘:lE‘ D] 6> ’q A -Q- =

Add-ins ChangeCaption Display name: | Add Red Box
ChangeExcellUserMame
Trust Center ChangeNamedRangeVisibility Cancel
2, ChangeStatusBar]
ChangeWorkbookToReadOnly << Remdive Code A
CheckfFileExists = Add-ins
ClearAllDataCellsinSelection Controls
CloseFileNoSave —
ConvertActiveSheetToValues =] myMacros (Custom)
ConvertAllWorksheetsToValues B Formatting (Customn)
ConvertMergedCellsToCenterAcr... % Add Red Box
v CopyActiveWeorksheetToNewWor... P aaa-ins
v CopyFile Help J

o - Wark...
v CopySelectedSheetsToMNewWork. Power Pivat

createdllFolders
21, CreateCustomlList I| New Tab | | = e | M
CreateTableOfContents
Reset ~ i

DeleteAllNamedRange Customizations:

DeleteAllPivotTable
DeleteAlIPrintAreas - Import/Export ¥ |G

Cancel

20

6. Click OK to close the window.

7. The new ribbon menu will appear containing your macro. Click the button to run the
macro.

F\l Home Insert Page Layout Formulas Data Review View Reporting Developer Help

Add
Red Boy]

Formatting

Create a button/shape on a worksheet
Macros can be executed using buttons or shapes on the worksheet.

1. To create a button, click Developer > Insert > Form Control > Button

File Home Insert Page Layout Formulas Data lReview View Reporting Help Power Pivot

E@ E ERacord Macro [g {Cé}-' = Properties E&Impnrt
== |3 adgp 3 i =
Use Relative Ref ‘o) View Cod (=3 Expansion Packs [
Visual Macros et Add- Excel COM Insert Pesign E‘\ 1enoae Source P -
Basic M\ Macro Security ins Add-ins Add-ins Mode E| Run Dialog
Code Add-ins ‘orm Controls ML

O 4a 5 HEE
ActiveX Controls

D EIMEEE §
He AEZE

2. Draw a shape on the worksheet to show the location and size of the button
3. The Assign Macro dialog will appear, select the macro and click OK.

Assign Macro

Macro name:
TurnQffBackgroundErrorCheck jud Edit

ToggleormulaReferenceStyleToR1C1 -~
ToggleQutlining Record...
ToggleRowCutlining
TogalescrollibarDisplay
TogagleStatusBarDisplay
ToggleStructuredReferenceWithTables
TransposeSelection
TurnOffAutofitColumns
UnhideAllWorksheets
UnhideRowsColumns
UnprotectctiveWorkbook ha

Macros in: | All Open Workbooks ~

Description

4. The button will appear. Clicking the button will run the macro

A B C D

Button 1

5. Right-click on the button to change the description

L T R N

21

To assign a different macro, right-click on the button and select Assign Macro... from the menu.

my button
I e
@ Copy
ﬁj Paste
Edit Text
Grouping >
Order >

<'§’ Eormat Control...

Alternatively, a macro can be assigned to a shape. After creating a shape, right-click on it and select
Assign Macro... from the menu, then follow the same process as for a button.

22

PART TWO:

VBA Macros

24

001 - Hide all selected sheets

What does it do?

Hides all the selected sheets.

VBA Code

Sub HideAllSelectedSheets ()

'Create variable to hold worksheets

Dim ws As Worksheet

'Ignore error if trying to hide the last worksheet

On Error Resume Next

'Loop through each worksheet in the active workbook

For Each ws In ActiveWindow.SelectedSheets

'Hide each sheet

ws.Visible = x1SheetHidden

Next ws

'Allow errors to appear

On Error GoTo 0

End Sub

Notes:
Excel requires at least one active worksheet. If all the visible sheets are selected, to avoid an error,
the VBA code will not hide the last sheet.

002 — Unhide all sheets

What does it do?

Makes all worksheets visible.

25

VBA Code

Sub UnhideAllWorksheets ()

'Create variable to hold worksheets

Dim ws As Worksheet

'Loop through each worksheet in the active workbook

For Each ws In ActiveWorkbook.Worksheets

'Unhide each sheet

ws.Visible = x1SheetVisible
Next ws

End Sub

003 - Protect all selected worksheets

What does it do?

Protects all the selected worksheets with a password determined by the user.

VBA Code

Sub ProtectSelectedWorksheets ()

Dim ws As Worksheet
Dim sheetArray As Variant

Dim myPassword As Variant

'Set the password
myPassword = Application.InputBox (prompt:="Enter password",

Title:="Password", Type:=2)

'The User clicked Cancel

If myPassword = False Then Exit Sub

'Capture the selected sheets

Set sheetArray = ActiveWindow.SelectedSheets

26

004 — Unprotect all worksheets

What does it do?

Unprotects all worksheets with a password determined by the user.

VBA Code

'The User clicked Cancel

If myPassword = False Then Exit Sub

'Loop through each worksheet in the active workbook

For Each ws In ActiveWorkbook.Worksheets

'Unprotect each worksheet

ws.Unprotect Password:=myPassword

Next ws

End Sub

005- Lock cells containing formulas

What does it do?
Password protects a single worksheet with cells containing formulas locked, all other cells are
unlocked.

VBA Code

Sub LockOnlyCellsWithFormulas ()

'Create a variable to hold the password

Dim myPassword As Variant

'If more than one worksheet selected exit the macro

If ActiveWindow.SelectedSheets.Count > 1 Then
'Display error message and exit macro
MsgBox "Select one worksheet and try again"
Exit Sub
End If
'Set the password
myPassword = Application.InputBox (prompt:="Enter password",

Title:="Password", Type:=2)

28

006 — Hide formulas when protected

What does it do?

When the active sheet is protected, formulas will not be visible in the formula bar. Uses a
predefined password of mypassword.

VBA Code

30

007 — Save time stamped backup file

What does it do?

Save a backup copy of the workbook with a time stamp.

VBA Code

Sub SaveTimeStampedBackup ()

'Create variable to hold the new file path

Dim saveAsName As String

'Set the file path
saveAsName = ActiveWorkbook.Path & "\" &

Format (Now, "yymmdd-hhmmss") & " " & ActiveWorkbook.Name

'Save the workbook

ActiveWorkbook.SaveCopyAs Filename:=saveAsName

End Sub

008 — Prepare workbook for saving

What does it do?
The macro will, for each worksheet:
e C(Close all group outlining
e Set the view to the normal view
e Remove gridlines
e Hide all row numbers and column numbers
e Select cell Al
The first sheet is selected.

After running the macro, every worksheet in the workbook will be in a tidy state for the next use.

31

VBA Code

009 - Convert merged cells to center across

What does it do?

Changes all single row merged cells into center across formatting.

VBA Code

010 - Fit selection to screen

What does it do?

Zoom the screen on the selected cells.

VBA Code

Sub FitSelectionToScreen ()

'To zoom to a specific area, then select the cells

Range ("A1:I15") .Select

'Zoom to selection

ActiveWindow.Zoom = True

'Select first cell on worksheet

Range ("Al1") .Select

End Sub

011 - Flip number signage on selected cells

What does it do?

Flips the number signage of all numeric values in the selected cells

VBA Code

Sub FlipNumberSignage ()

'Create variable to hold cells in the worksheet

Dim ¢ As Range

'Loop through each cell in selection

For Each ¢ In Selection

'Test if the cell contents is a number

If IsNumeric(c) Then

34

'Convert signage for each cell

c.Value = -c.Value
End If
Next c

End Sub

012 - Clear all data cells

What does it do?

Clears all cells in the selection which are constants (i.e. not formulas).

VBA Code

Sub ClearAllDataCellsInSelection ()

'Clear all hardcoded values in the selected range

Selection.SpecialCells (x1CellTypeConstants) .ClearContents

End Sub

013 — Add prefix to each cell in selection

What does it do?

Adds a prefix to each cell in the selected cells (excludes formulas and blanks).

VBA Code

Sub AddPrefix ()

Dim ¢ As Range

Dim prefixValue As Variant

35

'Display inputbox to collect prefix text
prefixValue = Application.InputBox (Prompt:="Enter prefix:",

Title:="Prefix", Type:=2)

'The User clicked Cancel

If prefixValue = False Then Exit Sub

For Each ¢ In Selection

'Add prefix where cell is not a formula or blank

If Not c.HasFormula And c.Value <> "" Then

c.Value = prefixValue & c.Value

End If

Next

End Sub

014 — Add suffix to each cell in selection

What does it do?

Adds a suffix to each value in the selected cells (excludes formulas and blanks).

VBA Code

Sub AddSuffix ()

Dim ¢ As Range

Dim suffixValue As Variant
'Display inputbox to collect prefix text
suffixValue = Application.InputBox (Prompt:="Enter Suffix:",

Title:="Suffix", Type:=2)

'The User clicked Cancel

If suffixValue = False Then Exit Sub

36

015 — Reverse row order

What does it do?

Reverses the order of all rows of data in the selection.

VBA Code

016 — Reverse column order

What does it do?

Reverses the order of all column data in the selection.

VBA Code

017 — Transpose selection

What does it do?

Transposes the selected cells with a single click.

VBA Code

018 — Create red box around selected areas

What does it do?

Draws a rectangle shape to fit around the selected cells.

VBA Code

Sub AddRedBox ()

Dim redBox As Shape
Dim selectedAreas As range
Dim i As Integer

Dim tempShape As Shape

'Loop through each selected area in active sheet

For Each selectedAreas In Selection.Areas

'Create a rectangle
Set redBox = ActiveSheet.Shapes.AddShape (msoShapeRectangle,
selectedAreas.Left, selectedAreas.Top,

selectedAreas.Width, selectedAreas.Height)

'Change attributes of shape created
redBox.Line.ForeColor.RGB = RGB (255, 0, 0)
redBox.Line.Weight = 2

redBox.Fill.Visible = msoFalse

'Loop to find a unique shape name
Do
i=1i+1

Set tempShape = Nothing

On Error Resume Next

Set tempShape = ActiveSheet.Shapes ("RedBox " & 1)
On Error GoTo 0

Loop Until tempShape Is Nothing

'Rename the shape

redBox.Name = "RedBox " & 1

41

Next

End Sub

019 — Delete all red boxes on active sheet

What does it do?

Having created the red boxes in the macro above. This code removes all the red boxes on the active
sheet with a single click.

VBA Code

Sub DeleteRedBox ()
Dim shp As Shape

'Loop through each shape on active sheet

For Each shp In ActiveSheet.Shapes

'Find shapes with a name starting with "RedBox "

If Left(shp.Name, 7) = "RedBox " Then

'Delete the shape

shp.Delete
End If
Next shp

End Sub

020 - Save selected chart as an image

What does it do?

Saves the selected chart as a picture to the file location contained in the macro.

42

VBA Code

Sub ExportSingleChartAsImage ()

'Create a variable to hold the path and name of image
Dim imagePath As String
Dim cht As Chart

imagePath = "C:\Users\marks\Documents\myImage.png"

Set cht = ActiveChart

'Export the chart
cht.Export (imagePath)

End Sub

021 - Resize all charts to same as active chart

What does it do?

Select the chart with the dimensions you wish to use, then run the macro. All the charts will resize
to the same dimensions.

VBA Code

Sub ResizeAllCharts ()

'Create variables to hold chart dimensions

Dim chtHeight As Long

Dim chtWidth As Long

'Create variable to loop through chart objects

Dim chtObj As ChartObject

'Get the size of the first selected chart
chtHeight = ActiveChart.Parent.Height

chtWidth = ActiveChart.Parent.Width

For Each chtObj In ActiveSheet.ChartObjects

43

chtObj.Height = chtHeight
chtObj.Width = chtWidth

Next chtObj

End Sub

022 — Refresh all Pivot Tables in workbook

What does it do?

Refresh all the Pivot Tables in the active workbook.

VBA Code

Sub RefreshAllPivotTables ()

'Refresh all pivot tables

ActiveWorkbook.RefreshAll

End Sub

023 — Turn off auto fit columns on all Pivot Tables

What does it do?

By default, PivotTables resize columns to fit the contents. This macro changes the setting for every
PivotTable in the active workbook, so that column widths set by the user are maintained.

VBA Code

Sub TurnOffAutofitColumns ()

'Create a variable to hold worksheets

Dim ws As Worksheet

'Create a variable to hold pivot tables

Dim pvt As PivotTable

44

024 - Get color code from cell fill color

What does it do?

Returns the RGB and Hex for the active cell’s fill color.

VBA Code

45

'Convert fill color to Hex

Hex = "#" & Application.WorksheetFunction.Dec2Hex (fillColor)

'Display fill color codes
MsgBox "Color codes for active cell" & vbNewLine &
"R:" & R & ", G:" & G & ", B:" & B & vbNewLine & _

"Hex: " & Hex, Title:="Color Codes"

End Sub

025 — Create a table of contents

What does it do?

Creates or refreshes a hyperlinked table of contents on a worksheet called “TOC”, which is placed
at the start of a workbook.

VBA Code

Sub CreateTableOfContents ()

Dim i As Long

Dim TOCName As String

'Name of the Table of contents

TOCName = "TOC"

'Delete the existing Table of Contents sheet if it exists
On Error Resume Next

Application.DisplayAlerts = False
ActiveWorkbook.Sheets (TOCName) .Delete
Application.DisplayAlerts = True

On Error GoTo 0

'Create a new worksheet
ActiveWorkbook.Sheets.Add before:=ActiveWorkbook.Worksheets (1)
ActiveSheet.Name = TOCName

'Loop through the worksheets

46

For i = 1 To Sheets.Count

'Create the table of contents
ActiveSheet.Hyperlinks.Add

Anchor:=ActiveSheet.Cells (i, 1),

Address:="",

SubAddress:=""'" & Sheets (i) .Name & "'!Al",
ScreenTip:=Sheets (i) .Name,

TextToDisplay:=Sheets (i) .Name

Next i

End Sub

026 - Excel to speak the cell contents
What does it do?

Excel speaks back the contents of the selected cells

VBA Code

Sub SpeakCellContents ()

'Speak the selected cells

Selection.Speak

End Sub

027 - Fix the range of cells which can be scrolled

What does it do?

Fixes the scroll range to the selected cell range. It prevents a user from scrolling into other parts of
the worksheet.

If a single cell is selected, the scroll range is reset.

47

VBA Code

Sub FixScrollRange ()
If Selection.Cells.Count = 1 Then

'Tf one cell selected, then reset

wn

ActiveSheet.ScrollArea =

Else
'Set the scroll area to the selected cells

ActiveSheet.ScrollArea = Selection.Address
End If

End Sub

028 — Invert the sheet selection

What does it do?

Select some worksheet tabs, then run the macro to reverse the selection.

VBA Code

Sub InvertSheetSelection ()

'Create variable to hold list of selected worksheet

Dim selectedList As String

'Create variable to hold worksheets

Dim ws As Worksheet

'Create variable to switch after the first sheet selected

Dim firstSheet As Boolean

'Convert selected sheest to a text string
For Each ws In ActiveWindow.SelectedSheets
selectedList = selectedList & ws.Name & "[|]"

Next ws

48

49

029 - Assign a macro to a shortcut key
What does it do?

Assigns a macro to a shortcut key.

VBA Code

Sub AssignMacroToShortcut ()

U<k Ctrl

' Shift

'{T} = the shortcut letter
Application.OnKey "+7{T}", "nameOfMacro"

'Reset shortcut to default - repeat without the name of the macro

'Application.OnKey "+%{T}"

End Sub

030 — Apply single accounting underline to selection

What does it do?

Single accounting underline is a formatting style which is not available in the ribbon. The macro
below applies single accounting underline to the selected cells.

VBA Code

Sub SingleAccountingUnderline ()

'Apply single accounting underline to selected cells

Selection.Font.Underline = xlUnderlineStyleSingleAccounting

End Sub

50

