
1

2

3

30 most

useful Excel

VBA Macros
https://exceloffthegrid.com

4

Copyright

Copyright © Excel Off The Grid

All rights reserved. This publication is protected by copyright. No part of this publication may be

reproduced, stored in a retrieval system or transmitted in any form or by any means, except as

permitted by the copyright holder.

Limit of liability/disclaimer of warranty

Because of the possibility of human or mechanical error, the copyright holder does not guarantee

the accuracy, adequacy or completeness of any information. The copyright holder accepts no liability

for any inaccuracy, error of omission, or for the results obtained, regardless of cause from the use of

any information.

The copyright holder does not warrant or guarantee that the information contained in the work will

meet your requirement or its fitness for a particular purpose.

5

Want more Macros?

You’ve got 30 macros in this book already, now get 70 more with 33% off.

Do you know the fastest way to learn foreign languages? It is to read, write,

speak, and think in that language as often as possible. Apart from speaking,

programming languages are no different. The more you immerse yourself in

that language, the faster you will pick it up.

Therefore, what most people like you need is lots of examples that you can

practice. From that you can learn how the code is structured, so you can

apply that in your own macros.

That is why the 100 Excel VBA Macros eBook exists. It’s the book for all

intermediate and advanced Excel users who want to learn how to read and

write Excel macros, save time, and stand out from their peers.

Get instance access now:

https://exceloffthegrid.com/100-excel-vba-macros/

Use discount code vbabook33 at checkout to get 33% off

https://exceloffthegrid.com/100-excel-vba-macros/

6

7

Contents

PART ONE: How to use VBA macros ... 9

How to use this book .. 11

What is VBA? ... 12

Advantages of using VBA .. 12

What is programming? ... 12

What is the difference between a Macro and VBA?... 13

Setting up Excel ... 14

Macro security settings ... 14

Enable the Developer ribbon .. 15

File format for macro enabled files ... 16

Personal macro workbook .. 16

Using the Visual Basic Editor ... 18

The Visual Basic Editor Window .. 18

Running a macro ... 19

Running a macro from within Visual Basic Editor ... 19

Running a macro from within Excel .. 19

PART TWO: VBA Macros ... 23

001 - Hide all selected sheets ... 25

002 – Unhide all sheets ... 25

003 – Protect all selected worksheets .. 26

004 – Unprotect all worksheets .. 27

005– Lock cells containing formulas ... 28

006 – Hide formulas when protected ... 30

007 – Save time stamped backup file ... 31

008 – Prepare workbook for saving .. 31

009 – Convert merged cells to center across .. 33

010 – Fit selection to screen ... 34

011 – Flip number signage on selected cells... 34

012 – Clear all data cells .. 35

013 – Add prefix to each cell in selection ... 35

014 – Add suffix to each cell in selection .. 36

015 – Reverse row order ... 37

016 – Reverse column order ... 38

8

017 – Transpose selection... 39

018 – Create red box around selected areas .. 41

019 – Delete all red boxes on active sheet ... 42

020 – Save selected chart as an image ... 42

021 – Resize all charts to same as active chart ... 43

022 – Refresh all Pivot Tables in workbook .. 44

023 – Turn off auto fit columns on all Pivot Tables .. 44

024 – Get color code from cell fill color .. 45

025 – Create a table of contents ... 46

026 – Excel to speak the cell contents .. 47

027 – Fix the range of cells which can be scrolled .. 47

028 – Invert the sheet selection ... 48

029 – Assign a macro to a shortcut key .. 50

030 – Apply single accounting underline to selection .. 50

9

PART ONE:
How to use VBA

Macros

10

11

How to use this book
The macros and techniques contained in this book are illustrations of what can be achieved with
VBA. In most circumstances, the code will need to be customized to your specific needs. As the
macro segments are illustrations, they are not all useful in their own right.

I have tried to write the code so it can be (a) understood by those with limited experience of VBA
and (b) easily customized to meet user requirements. This means that each macro is not necessarily
written in the most efficient manner and excludes extensive error checking.

Support files

All the macros are available in the support file, which was distributed in the same zip file as this
Ebook.

Found an error?

Whilst I try to create safe and reliable code segments, I can (and often do) make mistakes. Please
backup copies of your files before using any code in this book. Backing up ensures that if anything
goes seriously wrong, you can revert to a previous working version.

If you do find errors, please let me know. Go to https://exceloffthegrid.com/contact/ to contact
me and provide as much information about the error as possible. Hopefully, over time, with your
feedback, I can eradicate all the errors and turn this into an even better resource.

https://exceloffthegrid.com/contact/

12

What is VBA?
Visual Basic for Applications (VBA) is the programming language created by Microsoft to control
parts of their applications. Most things which you can do with the mouse or keyboard in the
Microsoft Office suite, you can also do using VBA. For example, in Excel, you can create a chart;
you can also create a chart using VBA, it is just another method of achieving the same thing.

Advantages of using VBA

Since VBA code can do the same things as we could with the mouse or keyboard, why bother to
use VBA at all?

Saves time:

VBA code will operate at the speed your computer will allow, which is still significantly faster than
you can operate. For example, if you have to open 10 workbooks, print the documents, then close
the workbook, it might take you 2 minutes with a mouse and keyboard, but with VBA it could take
seconds.

Reduces errors:

Do you ever click the wrong icons or type the wrong words? Me too, but VBA doesn’t. It will do the
same task over and over again, without making any errors. Don’t get me wrong, you still have to
program the VBA code correctly. If you tell it to do the wrong things 10 times, then it will. But if
we can get it right, then it can remove the errors created by human interaction.

Completes repetitive actions without complaining:

Have you ever had to carry out the same action many times? Maybe creating 100 charts, or printing
100 documents, or changing the heading on 100 spreadsheets. That’s not fun, nobody wants to do
that. But VBA is more than happy to do it for you. It can do the same thing in a repetitive way
(without complaining). In fact, repetitive tasks is one of the things VBA does best.

Integration with other applications:

You can use VBA in Word, Access, Excel, Outlook and many other programs, including Windows
itself. But it doesn’t end there, you can use VBA in Excel to control Word and PowerPoint, without
even needing to open those applications.

What is programming?

Programming is simply writing words in a way which a computer can understand. However,
computers are not particularly flexible, so we have to be very specific about what we want the
computer to do, and how we tell it to do it. The skill of programming is learning how to convey the
request to the computer as clearly, as simply and as efficiently as possible.

13

What is the difference between a Macro and VBA?

This is a common question which can be confusing. Put simply, VBA is the language used to write
a macro – just in the same way as a paragraph might be written using the English language.

The terms ‘macro’ and ‘VBA’ are often used interchangeably.

The golden rule of learning VBA

If you are still learning to write VBA, there is one thing which will help you. While it may be common
practice, to copy and paste code, it will not help you to learn VBA quickly. Here is the one rule I am
going to ask you to stick to... type out the code yourself.

Why am I asking you to do this? Because it will help you learn the VBA language much faster.

Let’s get started

Now you know what VBA is, why you should use it, and the golden rule, so there is only one thing
left to do… let’s get started!

14

Setting up Excel
Before you can get stuck in with using the code in this book, you must first have Excel set up
correctly. This involves:

1) Ensuring the correct macro security settings have been applied

2) Enabling the Developer ribbon.

Macro security settings

Macros can be used for malicious purposes, such as installing a virus, recording key-strokes, etc.
This can be blocked with the security settings. However, if the settings are set too high, you cannot
run any macros, or too low, you will not be protected. Neither of these is a good option.

Let’s apply suitable settings which will give you the power to decide when to allow macros or not.

1. In Excel, click File > Options

2. In the Excel Options dialog box, click Trust Centre > Trust Centre Settings…

3. In the Trust Centre dialog box, click Macro Settings > Disable all macros with notification.

15

4. Click OK to close the Trust Centre, then OK again to close the Excel Options.

Workbooks containing macros will now be automatically disabled until you click the Enable Content
button at the top of the screen.

Enable the Developer ribbon

The Developer ribbon is the place where all the VBA tools are kept. It is unlikely that this is already
enabled, unless you or your IT department have already done so.

Look at the top of your Excel Window if you see the word ‘Developer’ in the menu options, then
you are ready to go. You can skip straight ahead to the next part. However, if the ‘Developer’ ribbon
is not there, just follow these instructions.

1. In Excel, click File > Options

2. In the Excel Options dialog box, click Customize Ribbon

3. Ensure the Developer option is checked

16

4. Click OK to close the Excel Options

The Developer ribbon should now be visible at the top of the Excel window.

File format for macro enabled files

To save a workbook containing a macro, the standard .xlsx format will not work.

Generally, the .xlsm (Excel Macro-Enabled Workbook) file format should be used for workbooks
containing macros. However .xlam (Excel Add-in), .xlsb (Excel Binary Workbook) and .xltx (Excel
Macro-Enabled Template) are scenario specific formats which can also contain macros.

The legacy .xls and .xla file formats can both contain macros. They were superseded in 2007, and
should now be avoided.

Basic rule is… if you don’t know, go for .xlsm.

Personal macro workbook

If we want macros to be reusable for many workbooks, often the best place to save them is in the
personal macro workbook.

A personal macro workbook is a hidden file which opens whenever the Excel application opens.

17

How to create a personal macro workbook?

A personal macro workbook does not exist by default; we have to create it. There are many ways
to do this, but the easiest is to let Excel do it for us.

1. In the ribbon, click Developer > Record Macro.

2. In the Record Macro dialog box, select Personal Macro Workbook from the drop-down
list.

3. Click OK.

4. Do anything in Excel, such as typing your name into cell A1.

5. Click Developer > Stop Recording

6. Close all the open workbooks in Excel, this will force the personal macro workbook to be
saved. A warning message will appear, click Save.

In the next part, we will learn how to use the Visual Basic Editor, which gives us access to the
personal macro workbook.

18

Using the Visual Basic Editor

The Visual Basic Editor (or VBE as it can be known) is the place where we enter or edit VBA code.
The Visual Basic Editor is found within the Developer Ribbon

In Excel, click Developer > Visual Basic to open the VBE.

Alternatively, you could use the keyboard; press ALT+F11 (the + indicates that you should hold
down the ALT key, press F11, then release the ALT key), which toggles between the Excel window
and the VBE.

The Visual Basic Editor Window

The Visual Basic Editor contains four main sections.

Within the top left of the VBE, we will see a list of items which can contain VBA code (known as the
project window)

Double-clicking any sheet name, workbook or module, will open the code window associated with
that item. VBA code is entered into the code window.

Unless you have specific reasons, the best option is to enter the macro into a module. To create a
module, click Insert > Module within the VBE.

19

Running a macro

There are many ways to run VBA code. This section is not exhaustive, but is intended to provide an
overview of the most common methods.

Running a macro from within Visual Basic Editor

When testing VBA code, it is common to execute that code from the VBE.

Click anywhere within the code, between the Sub and End Sub lines, choose one of the following
options:

1. Click Run > Run Sub/UserForm from the menu at the top of the VBE

2. Using the keyboard, you can press ALT+F5

3. Click the play button at the top of the VBE

The code you entered will be executed.

Running a macro from within Excel

Once the code has been tested and in working order, it is common to execute it directly within
Excel. There are lots of options for this too (including events, or user defined functions), however
the three most common methods I will show you are:

Run from the Macro window

1. Click View > Macros or Developer > Macros

2. Select the macro from the list and click Run.

20

Create a custom ribbon

Having macros always available in the ribbon is a great time saver. Therefore, learning how to
customize the ribbon is useful.

1. In Excel, click File > Options

2. In the Excel Options dialog box, click Customize Ribbon

3. Click New Tab to create a new ribbon tab, then click New Group to create a section within
the new tab.

4. In the Choose commands from drop-down, select Macros. Select your macro and click
Add >> to move the macro it into your new group.

5. Use the Rename… button to give the tab, group or macro a more useful name.

21

6. Click OK to close the window.

7. The new ribbon menu will appear containing your macro. Click the button to run the
macro.

Create a button/shape on a worksheet

Macros can be executed using buttons or shapes on the worksheet.

1. To create a button, click Developer > Insert > Form Control > Button

2. Draw a shape on the worksheet to show the location and size of the button

3. The Assign Macro dialog will appear, select the macro and click OK.

4. The button will appear. Clicking the button will run the macro

5. Right-click on the button to change the description

22

To assign a different macro, right-click on the button and select Assign Macro… from the menu.

Alternatively, a macro can be assigned to a shape. After creating a shape, right-click on it and select
Assign Macro… from the menu, then follow the same process as for a button.

23

PART TWO:
VBA Macros

24

25

001 - Hide all selected sheets

What does it do?

Hides all the selected sheets.

VBA Code

Sub HideAllSelectedSheets()

'Create variable to hold worksheets

Dim ws As Worksheet

'Ignore error if trying to hide the last worksheet

On Error Resume Next

'Loop through each worksheet in the active workbook

For Each ws In ActiveWindow.SelectedSheets

 'Hide each sheet

 ws.Visible = xlSheetHidden

Next ws

'Allow errors to appear

On Error GoTo 0

End Sub

Notes:

Excel requires at least one active worksheet. If all the visible sheets are selected, to avoid an error,
the VBA code will not hide the last sheet.

002 – Unhide all sheets

What does it do?

Makes all worksheets visible.

26

VBA Code

Sub UnhideAllWorksheets()

'Create variable to hold worksheets

Dim ws As Worksheet

'Loop through each worksheet in the active workbook

For Each ws In ActiveWorkbook.Worksheets

 'Unhide each sheet

 ws.Visible = xlSheetVisible

Next ws

End Sub

003 – Protect all selected worksheets

What does it do?

Protects all the selected worksheets with a password determined by the user.

VBA Code

Sub ProtectSelectedWorksheets()

Dim ws As Worksheet

Dim sheetArray As Variant

Dim myPassword As Variant

'Set the password

myPassword = Application.InputBox(prompt:="Enter password", _

 Title:="Password", Type:=2)

'The User clicked Cancel

If myPassword = False Then Exit Sub

'Capture the selected sheets

Set sheetArray = ActiveWindow.SelectedSheets

27

'Loop through each worksheet in the active workbook

For Each ws In sheetArray

 On Error Resume Next

 'Select the worksheet

 ws.Select

 'Protect each worksheet

 ws.Protect Password:=myPassword

 On Error GoTo 0

Next ws

sheetArray.Select

End Sub

004 – Unprotect all worksheets

What does it do?

Unprotects all worksheets with a password determined by the user.

VBA Code

Sub UnprotectAllWorksheets()

'Create a variable to hold worksheets

Dim ws As Worksheet

'Create a variable to hold the password

Dim myPassword As Variant

'Set the password

myPassword = Application.InputBox(prompt:="Enter password", _

 Title:="Password", Type:=2)

28

'The User clicked Cancel

If myPassword = False Then Exit Sub

'Loop through each worksheet in the active workbook

For Each ws In ActiveWorkbook.Worksheets

 'Unprotect each worksheet

 ws.Unprotect Password:=myPassword

Next ws

End Sub

005– Lock cells containing formulas

What does it do?

Password protects a single worksheet with cells containing formulas locked, all other cells are
unlocked.

VBA Code

Sub LockOnlyCellsWithFormulas()

'Create a variable to hold the password

Dim myPassword As Variant

'If more than one worksheet selected exit the macro

If ActiveWindow.SelectedSheets.Count > 1 Then

 'Display error message and exit macro

 MsgBox "Select one worksheet and try again"

 Exit Sub

End If

'Set the password

myPassword = Application.InputBox(prompt:="Enter password", _

 Title:="Password", Type:=2)

29

'The User clicked Cancel

If myPassword = False Then Exit Sub

'All the following to apply to active sheet

With ActiveSheet

 'Ignore errors caused by incorrect passwords

 On Error Resume Next

 'Unprotect the active sheet

 .Unprotect Password:=myPassword

 'If error occured then exit macro

 If Err.Number <> 0 Then

 'Display message then exit

 MsgBox "Incorrect password"

 Exit Sub

 End If

 'Turn error checking back on

 On Error GoTo 0

 'Remove lock setting from all cells

 .Cells.Locked = False

 'Add lock setting to all cells

 .Cells.SpecialCells(xlCellTypeFormulas).Locked = True

 'Protect the active sheet

 .Protect Password:=myPassword

End With

End Sub

30

006 – Hide formulas when protected

What does it do?

When the active sheet is protected, formulas will not be visible in the formula bar. Uses a
predefined password of mypassword.

VBA Code

Sub HideFormulasWhenProtected()

'Create a variable to hold the password

Dim myPassword As String

'Set the password

myPassword = "myPassword"

'All the following to apply to active sheet

With ActiveSheet

 'Unprotect the active sheet

 .Unprotect Password:=myPassword

 'Hide formulas in all cells

 .Cells.FormulaHidden = True

 'Protect the active sheet

 .Protect Password:=myPassword

End With

End Sub

31

007 – Save time stamped backup file

What does it do?

Save a backup copy of the workbook with a time stamp.

VBA Code

Sub SaveTimeStampedBackup()

'Create variable to hold the new file path

Dim saveAsName As String

'Set the file path

saveAsName = ActiveWorkbook.Path & "\" & _

 Format(Now, "yymmdd-hhmmss") & " " & ActiveWorkbook.Name

'Save the workbook

ActiveWorkbook.SaveCopyAs Filename:=saveAsName

End Sub

008 – Prepare workbook for saving

What does it do?

The macro will, for each worksheet:

• Close all group outlining

• Set the view to the normal view

• Remove gridlines

• Hide all row numbers and column numbers

• Select cell A1

The first sheet is selected.

After running the macro, every worksheet in the workbook will be in a tidy state for the next use.

32

VBA Code

Sub PrepareWorkbookForSaving()

'Declare the worksheet variable

Dim ws As Worksheet

'Loop through each worksheet in the active workbook

For Each ws In ActiveWorkbook.Worksheets

 'Activate each sheet

 ws.Activate

 'Close all of groups

 ws.Outline.ShowLevels RowLevels:=1, ColumnLevels:=1

 'Set the view settings to normal

 ActiveWindow.View = xlNormalView

 'Remove the gridlines

 ActiveWindow.DisplayGridlines = False

 'Remove the headings on each of the worksheets

 ActiveWindow.DisplayHeadings = False

 'Get worksheet to display top left

 ws.Cells(1, 1).Select

Next ws

'Find the first visible worksheet and select it

For Each ws In Worksheets

 If ws.Visible = xlSheetVisible Then

 'Select the first visible worksheet

 ws.Select

 'Once the first visible worksheet is found exit the sub

 Exit For

33

 End If

Next ws

End Sub

009 – Convert merged cells to center across

What does it do?

Changes all single row merged cells into center across formatting.

VBA Code

Sub ConvertMergedCellsToCenterAcross()

Dim c As Range

Dim mergedRange As Range

'Loop through all cells in Used range

For Each c In ActiveSheet.UsedRange

 'If merged and single row

 If c.MergeCells = True And c.MergeArea.Rows.Count = 1 Then

 'Set variable for the merged range

 Set mergedRange = c.MergeArea

 'Unmerge the cell and apply Centre Across Selection

 mergedRange.UnMerge

 mergedRange.HorizontalAlignment = xlCenterAcrossSelection

 End If

Next

End Sub

34

010 – Fit selection to screen

What does it do?

Zoom the screen on the selected cells.

VBA Code

Sub FitSelectionToScreen()

'To zoom to a specific area, then select the cells

Range("A1:I15").Select

'Zoom to selection

ActiveWindow.Zoom = True

'Select first cell on worksheet

Range("A1").Select

End Sub

011 – Flip number signage on selected cells

What does it do?

Flips the number signage of all numeric values in the selected cells

VBA Code

Sub FlipNumberSignage()

'Create variable to hold cells in the worksheet

Dim c As Range

'Loop through each cell in selection

For Each c In Selection

 'Test if the cell contents is a number

 If IsNumeric(c) Then

35

 'Convert signage for each cell

 c.Value = -c.Value

 End If

Next c

End Sub

012 – Clear all data cells

What does it do?

Clears all cells in the selection which are constants (i.e. not formulas).

VBA Code

Sub ClearAllDataCellsInSelection()

'Clear all hardcoded values in the selected range

Selection.SpecialCells(xlCellTypeConstants).ClearContents

End Sub

013 – Add prefix to each cell in selection

What does it do?

Adds a prefix to each cell in the selected cells (excludes formulas and blanks).

VBA Code

Sub AddPrefix()

Dim c As Range

Dim prefixValue As Variant

36

'Display inputbox to collect prefix text

prefixValue = Application.InputBox(Prompt:="Enter prefix:", _

Title:="Prefix", Type:=2)

'The User clicked Cancel

If prefixValue = False Then Exit Sub

For Each c In Selection

 'Add prefix where cell is not a formula or blank

 If Not c.HasFormula And c.Value <> "" Then

 c.Value = prefixValue & c.Value

 End If

Next

End Sub

014 – Add suffix to each cell in selection

What does it do?

Adds a suffix to each value in the selected cells (excludes formulas and blanks).

VBA Code

Sub AddSuffix()

Dim c As Range

Dim suffixValue As Variant

'Display inputbox to collect prefix text

suffixValue = Application.InputBox(Prompt:="Enter Suffix:", _

 Title:="Suffix", Type:=2)

'The User clicked Cancel

If suffixValue = False Then Exit Sub

37

'Loop through each cellin selection

For Each c In Selection

 'Add Suffix where cell is not a formula or blank

 If Not c.HasFormula And c.Value <> "" Then

 c.Value = c.Value & suffixValue

 End If

Next

End Sub

015 – Reverse row order

What does it do?

Reverses the order of all rows of data in the selection.

VBA Code

Sub ReverseRows()

'Create variables

Dim rng As Range

Dim rngArray As Variant

Dim tempRng As Variant

Dim i As Long

Dim j As Long

Dim k As Long

'Record the selected range and it's contents

Set rng = Selection

rngArray = rng.Formula

'Loop through all cells and create a temporary array

For j = 1 To UBound(rngArray, 2)

 k = UBound(rngArray, 1)

38

 For i = 1 To UBound(rngArray, 1) / 2

 tempRng = rngArray(i, j)

 rngArray(i, j) = rngArray(k, j)

 rngArray(k, j) = tempRng

 k = k - 1

 Next

Next

'Apply the array

rng.Formula = rngArray

End Sub

016 – Reverse column order

What does it do?

Reverses the order of all column data in the selection.

VBA Code

Sub ReverseColumns()

'Create variables

Dim rng As Range

Dim rngArray As Variant

Dim tempRng As Variant

Dim i As Long

Dim j As Long

Dim k As Long

'Record the selected range and it's contents

Set rng = Selection

rngArray = rng.Formula

'Loop through all cells and create a temporary array

For i = 1 To UBound(rngArray, 1)

 k = UBound(rngArray, 2)

39

 For j = 1 To UBound(rngArray, 2) / 2

 tempRng = rngArray(i, j)

 rngArray(i, j) = rngArray(i, k)

 rngArray(i, k) = tempRng

 k = k - 1

 Next

Next

'Apply the array

rng.Formula = rngArray

End Sub

017 – Transpose selection

What does it do?

Transposes the selected cells with a single click.

VBA Code

Sub TransposeSelection()

'Create variables

Dim rng As Range

Dim rngArray As Variant

Dim i As Long

Dim j As Long

Dim overflowRng As range

Dim msgAns As Long

'Record the selected range and it's contents

Set rng = Selection

rngArray = rng.Formula

'Test the range and identify if any cells will be overwritten

If rng.Rows.Count > rng.Columns.Count Then

 Set overflowRng = rng.Cells(1, 1). _

40

 Offset(0, rng.Columns.Count). _

 Resize(rng.Columns.Count, _

 rng.Rows.Count - rng.Columns.Count)

ElseIf rng.Rows.Count < rng.Columns.Count Then

 Set overflowRng = rng.Cells(1, 1).Offset(rng.Rows.Count, 0). _

 Resize(rng.Columns.Count - rng.Rows.Count, rng.Rows.Count)

End If

If rng.Rows.Count <> rng.Columns.Count Then

 If Application.WorksheetFunction.CountA(overflowRng) > 0 Then

 msgAns = MsgBox("Worksheet data in " & overflowRng.Address & _

 " will be overwritten." & vbNewLine & _

 "Do you wish to continue?", vbYesNo)

 If msgAns = vbNo Then Exit Sub

 End If

End If

'Clear the rnage

rng.Clear

'Reapply the cells in transposted position

For i = 1 To UBound(rngArray, 1)

 For j = 1 To UBound(rngArray, 2)

 rng.Cells(1, 1).Offset(j - 1, i - 1) = rngArray(i, j)

 Next

Next

End Sub

41

018 – Create red box around selected areas

What does it do?

Draws a rectangle shape to fit around the selected cells.

VBA Code

Sub AddRedBox()

Dim redBox As Shape

Dim selectedAreas As range

Dim i As Integer

Dim tempShape As Shape

'Loop through each selected area in active sheet

For Each selectedAreas In Selection.Areas

 'Create a rectangle

 Set redBox = ActiveSheet.Shapes.AddShape(msoShapeRectangle, _

 selectedAreas.Left, selectedAreas.Top, _

 selectedAreas.Width, selectedAreas.Height)

 'Change attributes of shape created

 redBox.Line.ForeColor.RGB = RGB(255, 0, 0)

 redBox.Line.Weight = 2

 redBox.Fill.Visible = msoFalse

 'Loop to find a unique shape name

 Do

 i = i + 1

 Set tempShape = Nothing

 On Error Resume Next

 Set tempShape = ActiveSheet.Shapes("RedBox_" & i)

 On Error GoTo 0

 Loop Until tempShape Is Nothing

 'Rename the shape

 redBox.Name = "RedBox_" & i

42

Next

End Sub

019 – Delete all red boxes on active sheet

What does it do?

Having created the red boxes in the macro above. This code removes all the red boxes on the active
sheet with a single click.

VBA Code

Sub DeleteRedBox()

Dim shp As Shape

'Loop through each shape on active sheet

For Each shp In ActiveSheet.Shapes

 'Find shapes with a name starting with "RedBox_"

 If Left(shp.Name, 7) = "RedBox_" Then

 'Delete the shape

 shp.Delete

 End If

Next shp

End Sub

020 – Save selected chart as an image

What does it do?

Saves the selected chart as a picture to the file location contained in the macro.

43

VBA Code

Sub ExportSingleChartAsImage()

'Create a variable to hold the path and name of image

Dim imagePath As String

Dim cht As Chart

imagePath = "C:\Users\marks\Documents\myImage.png"

Set cht = ActiveChart

'Export the chart

cht.Export (imagePath)

End Sub

021 – Resize all charts to same as active chart

What does it do?

Select the chart with the dimensions you wish to use, then run the macro. All the charts will resize
to the same dimensions.

VBA Code

Sub ResizeAllCharts()

'Create variables to hold chart dimensions

Dim chtHeight As Long

Dim chtWidth As Long

'Create variable to loop through chart objects

Dim chtObj As ChartObject

'Get the size of the first selected chart

chtHeight = ActiveChart.Parent.Height

chtWidth = ActiveChart.Parent.Width

For Each chtObj In ActiveSheet.ChartObjects

44

 chtObj.Height = chtHeight

 chtObj.Width = chtWidth

Next chtObj

End Sub

022 – Refresh all Pivot Tables in workbook

What does it do?

Refresh all the Pivot Tables in the active workbook.

VBA Code

Sub RefreshAllPivotTables()

'Refresh all pivot tables

ActiveWorkbook.RefreshAll

End Sub

023 – Turn off auto fit columns on all Pivot Tables

What does it do?

By default, PivotTables resize columns to fit the contents. This macro changes the setting for every
PivotTable in the active workbook, so that column widths set by the user are maintained.

VBA Code

Sub TurnOffAutofitColumns()

'Create a variable to hold worksheets

Dim ws As Worksheet

'Create a variable to hold pivot tables

Dim pvt As PivotTable

45

'Loop through each sheet in the activeworkbook

For Each ws In ActiveWorkbook.Worksheets

 'Loop through each pivot table in the worksheet

 For Each pvt In ws.PivotTables

 'Turn off auto fit columns on PivotTable

 pvt.HasAutoFormat = False

 Next pvt

Next ws

End Sub

024 – Get color code from cell fill color

What does it do?

Returns the RGB and Hex for the active cell’s fill color.

VBA Code

Sub GetColorCodeFromCellFill()

'Create variables hold the color data

Dim fillColor As Long

Dim R As Integer

Dim G As Integer

Dim B As Integer

Dim Hex As String

'Get the fill color

fillColor = ActiveCell.Interior.Color

'Convert fill color to RGB

R = (fillColor Mod 256)

G = (fillColor \ 256) Mod 256

B = (fillColor \ 65536) Mod 256

46

'Convert fill color to Hex

Hex = "#" & Application.WorksheetFunction.Dec2Hex(fillColor)

'Display fill color codes

MsgBox "Color codes for active cell" & vbNewLine & _

 "R:" & R & ", G:" & G & ", B:" & B & vbNewLine & _

 "Hex: " & Hex, Title:="Color Codes"

End Sub

025 – Create a table of contents

What does it do?

Creates or refreshes a hyperlinked table of contents on a worksheet called “TOC”, which is placed
at the start of a workbook.

VBA Code

Sub CreateTableOfContents()

Dim i As Long

Dim TOCName As String

'Name of the Table of contents

TOCName = "TOC"

'Delete the existing Table of Contents sheet if it exists

On Error Resume Next

Application.DisplayAlerts = False

ActiveWorkbook.Sheets(TOCName).Delete

Application.DisplayAlerts = True

On Error GoTo 0

'Create a new worksheet

ActiveWorkbook.Sheets.Add before:=ActiveWorkbook.Worksheets(1)

ActiveSheet.Name = TOCName

'Loop through the worksheets

47

For i = 1 To Sheets.Count

 'Create the table of contents

 ActiveSheet.Hyperlinks.Add _

 Anchor:=ActiveSheet.Cells(i, 1), _

 Address:="", _

 SubAddress:="'" & Sheets(i).Name & "'!A1", _

 ScreenTip:=Sheets(i).Name, _

 TextToDisplay:=Sheets(i).Name

Next i

End Sub

026 – Excel to speak the cell contents

What does it do?

Excel speaks back the contents of the selected cells

VBA Code

Sub SpeakCellContents()

'Speak the selected cells

Selection.Speak

End Sub

027 – Fix the range of cells which can be scrolled

What does it do?

Fixes the scroll range to the selected cell range. It prevents a user from scrolling into other parts of
the worksheet.

If a single cell is selected, the scroll range is reset.

48

VBA Code

Sub FixScrollRange()

If Selection.Cells.Count = 1 Then

 'If one cell selected, then reset

 ActiveSheet.ScrollArea = ""

Else

 'Set the scroll area to the selected cells

 ActiveSheet.ScrollArea = Selection.Address

End If

End Sub

028 – Invert the sheet selection

What does it do?

Select some worksheet tabs, then run the macro to reverse the selection.

VBA Code

Sub InvertSheetSelection()

'Create variable to hold list of selected worksheet

Dim selectedList As String

'Create variable to hold worksheets

Dim ws As Worksheet

'Create variable to switch after the first sheet selected

Dim firstSheet As Boolean

'Convert selected sheest to a text string

For Each ws In ActiveWindow.SelectedSheets

 selectedList = selectedList & ws.Name & "[|]"

Next ws

49

'Set the toggle of first sheet

firstSheet = True

'Loop through each worksheet in the active workbook

For Each ws In ActiveWorkbook.Sheets

 'Check if the worksheet was not previously selected

 If InStr(selectedList, ws.Name & "[|]") = 0 Then

 'Check the worksheet is visible

 If ws.Visible = xlSheetVisible Then

 'Select the sheet

 ws.Select firstSheet

 'First worksheet has been found, toggle to false

 firstSheet = False

 End If

 End If

Next ws

End Sub

50

029 – Assign a macro to a shortcut key

What does it do?

Assigns a macro to a shortcut key.

VBA Code

Sub AssignMacroToShortcut()

'+ = Ctrl

'^ = Shift

'{T} = the shortcut letter

Application.OnKey "+^{T}", "nameOfMacro"

'Reset shortcut to default - repeat without the name of the macro

'Application.OnKey "+%{T}"

End Sub

030 – Apply single accounting underline to selection

What does it do?

Single accounting underline is a formatting style which is not available in the ribbon. The macro
below applies single accounting underline to the selected cells.

VBA Code

Sub SingleAccountingUnderline()

'Apply single accounting underline to selected cells

Selection.Font.Underline = xlUnderlineStyleSingleAccounting

End Sub

